Searching over 5,500,000 cases.

Buy This Entire Record For $7.95

Download the entire decision to receive the complete text, official citation,
docket number, dissents and concurrences, and footnotes for this case.

Learn more about what you receive with purchase of this case.

B. B. Chemical Co. v. Cataract Chemical Co.

August 15, 1941


Appeal from the District Court of the United States for the Western District of New York.

Author: Chase

Before SWAN, CHASE, and CLARK, Circuit Judges.

CHASE, Circuit Judge.

The plaintiff, the admitted owner, sued the defendant in the District Court for the Western District of New York for infringement of U.S. Patent No. 1,959,321 which was granted May 15, 1934, on the application of Walter H. Wedger, filed December 29, 1931, for a composition and method for its use in securing pieces of stock together. The specifications show that the patent deals with improvements in making and using a softener of dried pyroxylin cement which is of general service and particularly in the attachment of the soles of shoes to the uppers. Without so limiting the scope of the patent, it will be convenient to discuss it simply in relation to such use.

Before Wedger applied for this patent, it was customary to secure shoe soles to their uppers with cement by placing around the edges of a sole and of the upper, after both were prepared for that purpose, a band of pyroxylin cement; allowing it to dry; applying a cement softener just before the sole was to be attached; putting the sole in place on the upper; and then placing upper and sole in a press for a period long enough to allow the cement to set while the parts were held properly in place by the press. This operation required a "dwell" in the press of something like twenty minutes to half an hour and after removal from the press a considerable waiting period was needed before the next operation upon the shoe. This required a comparatively large number of presses for each operator and a correspondingly large amount of factory space. In addition to these disadvantages, some of the softeners in use were either so thin and volatile that they would spread over the cement and evaporate in spots so quickly that there would be "dry joints" in places giving poor attachment of sole to upper or the softeners, if thick enough to avoid such defects, would often contain so great a proportion of solids that this material was apt to be squeezed out in the press and stain the upper leather. if this leather was so colored that such stains could not be removed, as was the case in some instances, the product was permanently damaged.

There is evidence that considerable effort was made, before Wedger's invention without marked success, to produce a more satisfactory softener. Much of it dealt with attempted adaptations of a theory that rather highly volatile solvents might be supplied to fast operators and solvents which did not evaporate so quickly could be used by slower workers or of the principle that heat in the press, or pre-heating the upper, would hasten the setting of the cement; or cooling the softener to retard its evaporation until the sole was put on the upper and the two could be put in the press. None of these expedients, however, accomplished the desired results.

Wedger then hit upon a solution which did away with the difficulties mentioned and resulted in the patent in suit by making a softener whose viscosity prevented unwanted spreading; whose body, nevertheless, contained less than enough solids to cause "squeeze-out"; and whose volatile content was of the low boiling point order which would evaporate quickly.

In so doing he provided a softener which was satisfactory for use with certain machines, mentioned in his specifications, for cementing soles to shoes, and for which applications for patents were pending when he filed his application. It is however, difficult to determine how much of the apparent success of the use of Wedger's softener with those machines is fairly attributable to the softener itself for that was made of the previously used ingredients and the specifications and claims, as will be seen, are extremely vague.

The softening of pyroxylin, or nitrocellulose, cement could, as was well known, be accomplished by "activating" or "cutting" the dried cement with a thinner solution of the nitrocellulose dissolved in one or more of a number of its solvents such as acetone, ether, ethyl acetate, butyl acetate or the like. Some of these solvents were of the low boiling point, and some of the high boiling point, variety. The lower the boiling point the higher the volatility and vice versa.This was erll known and, presumably, any good chemist would obtain the desired volatility by selecting the needed solvent. Another essential in the softener was the right viscosity for otherwise it would not stay where wanted when applied and spreading would have its effect on the rate of evaporation which varies directly with the area of surface exposure. The viscosity of the softener, as was known, could be increased by increasing the proportion of nitrocellulose to the amount of solvent used at a given temperature and could also be increased by using nitrocellulose of a higher viscosity characteristic. Nitrocellulose, being itself a solid, has no viscosity but compositions of cotton and nitric acid which make nitrocellulose differ according to production methods and have different abilities for imparting viscosity to the resulting solution when dissolved in their solvents. Viscosity is either measured in terms of the centipoise or, not so scientifically, in terms of seconds. The latter is a practical method of measurement which consists of placing the solution in a glass tube one inch in diameter and noting how long in terms of seconds it will take a steel ball of a given size and weight to drop through the solution a distance of ten inches. If the time is ten seconds, for example, the nitrocellulose is called ten seconds nitrocellulose meaning that such nitrocellulose has that viscosity characteristic. There was, therefore, two generally accepted ways to measure, and express accurately, the viscosity with which Wedger dealt in his specifications.

Wedger applied, on Jan. 12, 1931, for a patent for a so-called blanket softener. This application was co-pending with that for the patent in suit and both patents were granted on the same day. This application was mentioned in the specifications of the patent in suit as a softener "for use in cutting pyroxylin cement as well as an improved method of shoemaking based upon reducing the evaporation of a highly volatile softener by the addition thereto of material which raised its viscosity and which apparently while the film of solvent is exposed to the air, forms a skin or 'blanket' which protects the underlying softener from evaporation." The use of that softener reduced the time dwell in the press, but the object of the patent in suit was further improvement, as the specifications show, "by applying to the hardened cement on the sole or shoe and/or shoe bottom a somewhat viscous or plastic softener which, as disclosed herein, comprises a composition containing a relatively small quantity of a suitable cellulose derivative, preferably one which has a high viscosity characteristic, dissolved in a relatively volatile solvent." After stating that the cement could be applied to soles and uppers by using machines such as two patented ones mentioned, Wedger said in his specifications that his softener could be applied "by means of a machine similar to that shown" in a named patent and then that the shoe parts could "be brought into assembled relation and maintained under pressure conveniently in a cement sole attaching machine such as that shown" in another patent.

He gave as an example of his softener a composition of 40 grams of dry commercial nitrocellulose of a nominal 1100-seconds viscosity, wet with 18cc. of denatured alcohol to make it safe to handle and 900cc. of acetone. This, he said, would produce a softener having a viscosity "within the range of about 1000 to 1500 centipoises." He made it plain that the desired solution should be relatively high in viscosity and low in solid content which in the example was less than 5%. He said that though the viscosity of the solution might be varied somewhat it "should not be brought substantially below that wherein a ribbon of the material will remain in position when placed on dried cement without substantial flowage." And, further, "I find it of no particular advantage to increase the viscosity beyond the point where a ribbon of the material applied to a sole will retain its shape." He recommended acetone as an "exceptionally suitable solvent in this work" and said that "to have the cement set sufficiently within one minute or thereabouts to permit removal of the shoe from the pressure applying machine, I prefer to employ nitrocellulose solvents having a boiling point of 30 degrees to 80 degrees C." The example given in the specifications was by way of illustration only and not a limitation.

The plaintiff charged direct infringement of product claims 1, 2, 6 and 21 and contributory infringement of method claims 19 and 20. Claim 1 is broadly for a softener for dried pyroxylin cement made of either high viscosity nitrocellulose dissolved in a volatile nitrocellulose solvent "to give the softener a plasticity such that it will stay where it is placed on dry pyroxylin cement without substantial flowage but will flow a short distance under pressure applied thereto." Claim 2 is for a high viscosity softener for cutting like cement "comprising a small amount of cellulose ester or ether dissolved in a highly volatile solvent." Claim 6 is for a composition made with nitrocellulose "of a viscosity of at least several hundred seconds" dissolved in a solvent "boiling in the neighborhood of 30 to 80 degrees C." to produce a softener having "a viscosity of above 1000 to 1500 centipoises." Claim 21 is for a composition made with the solvent of claim 6 with enough high viscosity cellulose derivative to make the softener act like that of claim 1. Claim 19 is for improvements in methods of securing together two parts, each of which is coated with a dry cellulose derivative cement, by softening the dry cement on one of the parts with the application of a highly viscous solution of high viscosity cellulose derivative in a low boiling solvent and pressing the parts together. Claim 20 is for a similar process for the same purpose which uses a softener made by dissolving in 10 to 20 parts of a low boiling solvent one part of a cellulose derivative whose viscosity characteristic is high enough to prevent substantial flowage of the softener when not under pressure.

The problem Wedger faced was to provide a softener which would cut the dried cement sufficiently without being so volatile that it would dry before the operator could place the parts in position in the press; of a viscosity that would prevent spreading before pressing; and contain less than enough solids to cause a staining squeeze-out when the press was applied. He accomplished these things and more for he produced a softener which substantially reduced the "dwell" in the press and at a saving in the amount of softener needed per application. As might be expected, his softener has been much used. It had three characteristics which, so far as the proof shows, had never before been combined in a softener for dried pyroxylin cement. They were that its viscosity was substantially higher than other nitrocellulose softeners but lower than ordinary nitrocellulose cements; its nitrocellulose content was lower than that in the usual nitrocellulose cements; and its volatility was relatively high because of the use of low boiling solvents preferably between 30 and 80 degrees C. His example given in the specifications showed specifically one way to make such a softener and that was broadened by permissible variations elsewhere indicated in the specifications.

But it was not enough to avoid dedicating his invention to the public to teach those skilled in the art how to practice it; he was required to state clearly what he claimed to be new in his invention. General Electric Co. v. Wabash Appliance Corp., 304 U.S. 364, 58 S. Ct. 899, 82 L. Ed. 1402. To secure a good patent, he had to secure valid claims for they are the measure of the grant to a patentee. Smith v. Snow, 294 U.S. 1, 55 S. Ct. 279, 79 L. Ed. 721. ...

Buy This Entire Record For $7.95

Download the entire decision to receive the complete text, official citation,
docket number, dissents and concurrences, and footnotes for this case.

Learn more about what you receive with purchase of this case.