Searching over 5,500,000 cases.


searching
Buy This Entire Record For $7.95

Download the entire decision to receive the complete text, official citation,
docket number, dissents and concurrences, and footnotes for this case.

Learn more about what you receive with purchase of this case.

ASTRA AKTIEBOLAG v. ANDRX PHARMACEUTICALS

October 16, 2002

ASTRA AKTIEBOLAG, ET AL., PLAINTIFFS,
V.
ANDRX PHARMACEUTICALS, INC., DEFENDANT. ASTRA AKTIEBOLAG, ET AL., PLAINTIFFS, V. CHEMINOR DRUGS, LTD., ET AL., DEFENDANTS. ASTRA AKTIEBOLAG, ET AL., PLAINTIFFS, V. GENPHARM INC., DEFENDANT. ASTRA AKTIEBOLAG, ET AL., PLAINTIFFS, V. KREMERS URBAN DEVELOPMENT CO., ET AL., DEFENDANTS. IN RE OMEPRAZOLE PATENT LITIGATION.



The opinion of the court was delivered by: Jones, District Judge.

              Opinion and Order

I. Introduction*fn1

Pursuant to 28 U.S.C. § 1407, the Judicial Panel on Multidistrict Litigation consolidated for pre-trial purposes before this court the patent infringement suits filed by Astra Aktiebolag, Aktiebolaget Hässle, Astra Merck Enterprises Inc., Astra Merck Inc., KBI-E Inc., KBI Inc., Astra Pharmaceuticals L.P., and AstraZeneca L.P. in response to various pharmaceutical companies' requests for permission from the Food and Drug Administration ("FDA") to market generic versions of Prilosec®, Astra's highly profitable gastric acid inhibiting drug. At various points in this litigation, Plaintiffs have asserted as many as eight different patents against Defendants. At the time of trial, five of those patents remained in the suit. This consolidated trial resolves claims raising issues of infringement and validity asserted in eight different lawsuits involving four groups of Defendants.*fn2 The case was tried to the court sitting without a jury for fifty-two trial days between December 6, 2001, and June 13, 2002. The court has considered over six thousand pages of trial testimony, volumes of deposition testimony, thousands of exhibits, and pre-trial and post-trial briefing submitted by all parties. The court has made determinations as to the relevance and materiality of the evidence and assessed the credibility of each witness. Upon the record before the court, pursuant to Federal Rule of Civil Procedure 52(a), the court finds the following facts to have been proven by the appropriate standard of proof and sets forth its conclusions of law.

A. The Parties

Plaintiff Astra Aktiebolag is a company organized and existing under the laws of Sweden, having its principal place of business at Södertälje Sweden. Plaintiff Aktiebolaget Hässle ("Hässle") is a company organized and existing under the laws of Sweden, having its principal place of business at MöIndal, Sweden. Plaintiff Astra Merck Enterprises, Inc. is a Delaware corporation, having its principal place of business at Wilmington, Delaware. Plaintiff Astra Merck, Inc. is a Delaware corporation, having its principal place of business at Wayne, Pennsylvania. Plaintiff KBI-E, Inc. is a Delaware corporation, having its principal place of business at Wilmington, Delaware. Plaintiff KBI, Inc. is a Delaware corporation having its principal place of business at Whitehouse Station, New Jersey. Plaintiff Astra Pharmaceuticals, L.P. is a limited partnership organized under the laws of Delaware having its principal place of business at Wayne, Pennsylvania. Plaintiff AstraZeneca, L.P. is a limited partnership organized under the laws of Delaware having its principal place of business at Wayne, Pennsylvania. Plaintiffs are referred to collectively as "Astra."

Defendant Andrx Pharmaceuticals, Inc. ("Andrx") is a Florida corporation, having its principal place of business at Davie, Florida. Defendant Cheminor Drugs, Ltd. is a public, limited-liability company incorporated and existing under the laws of India and having a principal place of business in Hyderabad, India. Defendant Reddy-Cheminor, Inc. is a New Jersey corporation, having its principal place of business at Ridgewood, New Jersey. Defendant Schein Pharmaceutical, Inc. is a Delaware corporation, having its principal place of business at Florham Park, New Jersey. These three Defendants are referred to collectively as "Cheminor." Defendant Genpharm Inc. ("Genpharm") is a Canadian corporation, having its principal place of business in Ontario, Canada. Defendant Kremers Urban Development Co., a wholly-owned subsidiary of Schwarz Pharma, Inc. ("Schwarz"), is a Wisconsin corporation, having its principal place of business in Mequon, Wisconsin. Defendant Schwarz is a Delaware corporation, having its principal place of business at Mequon, Wisconsin. These last two Defendants are referred to collectively as "KUDCo."

B. Development of Omeprazole and Astra's Formulations

Even once the compound itself had been developed, the task of turning the compound omeprazole into a viable medicine proved to be formidable. (Carlsson Tr. at 170:10-171:20.) Before omeprazole could be used as a medicine, Astra had to establish the compound's safety and efficacy in animals and in human beings. In addition, Astra's scientists needed to develop a formulation or dosage form that would deliver the compound to the proper site of action in the body and remain stable both in the body and on the shelf. (Carlsson Tr. 171:8-20.) A group of Astra scientists set out to develop an oral dosage form for omeprazole and its related compounds, (Pilbrant Tr. 1587:2-5), and their work ultimately culminated in the patents at issue in this case. Drs. Ake Pilbrant*fn4 and Kurt Lövgren*fn5 were a part of that team, and they are two of the named inventors on Astra's '505 and '230 patents. (Lövgren Tr. 1741:8-18; Pilbrant Tr. 1317:12-14, 1318:21-22; P1, P2A.) Omeprazole proved to be a particularly difficult and challenging molecule to formulate. Omeprazole is an exceptionally acid labile compound, which means that it degrades quickly in acidic environments like the stomach. (Langer Tr. 295:1-23; Pilbrant Tr. 1587:615.)*fn6 Omeprazole is also sensitive to heat, moisture, organic solvents, and, to some degree, light. (Carlsson Tr. 172:19-22, 179:14-21; Pilbrant Tr. 1323:25-1324:9, 1641:11-15; Lövgren Tr. 1747:4-11; P916 at 114.) Overcoming omeprazole's multiple sensitivities proved to be a substantial challenge, and Astra considered a number of different approaches to make an oral formulation. (Pilbrant Tr. 1328:12-20.)

First, Astra's formulation scientists tried dissolving omeprazole in oil to protect the omeprazole from gastric juice, but this approach did not work because omeprazole is unstable in oil. (Pilbrant Tr. 1328:21-1329:11.) A very rapidly dissolving dosage form was investigated on the theory that the rate of absorption of omeprazole into the body would be faster than the rate of degradation in the stomach. That also did not work; more than 50% of the drug was lost due to degradation. (Pilbrant Tr. 1329:12-1330:8.) Omeprazole was administered with food on the theory that food would increase the pH in the stomach and allow the omeprazole to survive long enough to be absorbed. This approach also failed; almost 90% of the dose was lost. (Pilbrant Tr. 1330:9-1331:2.) Studies to determine the target point in the digestive system for omeprazole release were undertaken, and Astra's formulation scientists concluded that omeprazole should be released in the proximal part of the small intestine. (Pilbrant Tr. 1326:25-1328:7; 1587:16-21.)

When Astra first tested omeprazole in humans, a buffered suspension was used to make the highly acidic stomach environment more alkaline. (Carlsson Tr. 172:4-13.) Although this buffered suspension was not practical for commercial use, it was used in initial studies in humans, the "Phase I" studies. (Carlsson Tr. 172:14-18.) Drs. Pilbrant and Lövgren decided to try enteric-coated formulations to see if an enteric coat would protect the omeprazole from gastric acid in the stomach. (Pilbrant Tr. 1331:3-1332:4, 1587:25-1588:5.) An enteric coating is typically a polymer film that is insoluble in stomach acid, but soluble in the intestine, (Pilbrant Tr. 1331:8-22, 1332:5-11), so the enteric-coating protects material that degrades in the acidic environment of the stomach until it reaches the small intestine. Drs. Pilbrant and Lövgren did a number of pre-formulation studies to determine whether enteric coatings, which are polymeric polyacids, would have a deleterious effect on omeprazole. The results of the studies showed that the enteric coating materials had approximately the same interaction as most other common pharmaceutical excipients if these excipients did not contain a lot of water. Astra determined that an enteric coating was a viable approach to explore further. (Pilbrant Tr. 1331:17-1333:9.)

The Astra scientists studied a number of different types of cores to be used in formulation, including tablet and pellet-type cores. (Pilbrant Tr. 1333:21-24.) Astra also tried a number of different processes for making pellet-type cores. First, Dr. Pilbrant and his group tested cores formed by compressing omeprazole together with pharmaceutical excipients. The Astra scientists also experimented with melt granulations, in which omeprazole was dissolved or dispersed in material that had been heated to its melting point and then cooled down to form a solid core. Dr. Pilbrant and his group constructed cores by depositing an active drug layer of omeprazole onto an inert sugar sphere. Finally, the Astra scientists experimented with extrusion spheronization. Astra eventually settled on that extrusion spheronization process for preparing its cores. (Pilbrant Tr. 1333:25-1335:4.) In Astra's extrusion spheronization work, water was added to a powder mixture to make a dough. When the plasticity was suitable, the dough was pressed through a machine to make spaghetti-like strings. These strings were then sectioned in small parts that were put on a rotating plate where the small parts were rounded. (Pilbrant Tr. 1335:5-14.)

After making and testing numerous formulations, Astra eventually arrived at a formulation used in Phase II clinical experiments. The Phase II formulation consisted of a core containing omeprazole mixed together with some excipients and alkaline reacting compounds ("ARCs") and an enteric coating that covered the core and included hydroxypropyl methylcellulose phthalate ("HPMCP"). (Pilbrant Tr. 1339:6-11; Lövgren Tr. 1747:22-1748:6.) While the Phase II formulation was adequate for conducting short term Phase II clinical trials, it did not solve all the issues related to omeprazole formulation. (Carlsson Tr. 174:6-11.) For example, Dr. Pilbrant and other Astra scientists realized that the Phase II formulation would discolor on long term storage. Also, although Phase II formulations were ordinarily colored off-white to light beige, Dr. Pilbrant and others observed that sometimes the formulation would become discolored during the enteric coating process. (P1, col. 1:52-56; Pilbrant Tr. 1339:18-1340:22, 1591:15-25; Lövgren Tr. 1751:3-13.) The Astra scientists were also concerned because the Phase II formulation had limited gastric acid stability. Gastric acid resistance is a measure of how effective the formulation is in resisting attack by acidic solutions. (Pilbrant Tr. 1341:18-1342:14.) The Phase II formulation had inferior gastric acid resistance and often proved to be below Astra's requirement of greater than 85% gastric acid resistance. (Lövgren Tr. 4941:14-4942:2.) An orally-administered formulation can remain in the patient's stomach for as long as two hours. If the enteric coating fails during that time, the omeprazole will be destroyed. Testing for gastric resistance is, therefore, a requirement. If, as with the Phase II formulation, only 75% of the production batch passes the test, a very large percentage of the production cannot be sold. (Pilbrant Tr. 1341:9-1342:20.) Thus, Astra was not satisfied with the Phase II formulation's gastric resistance (too much of it degraded in the stomach) or with its long-term storage stability (the omeprazole degraded and became discolored) and concluded that the formulation would not be suitable for marketing as a dosage form. (Pilbrant Tr. 1339:21-1340:22, 1341:8-17, 1342:10-14; Carlsson Tr. 174:10-12, 183:20-21, 213:17.) The shelf-life of the Phase II formulation would be no more than about 18 months. (Lövgren Tr. 1732:24-1733:5.) There were also concerns expressed by foreign regulators about discoloration. (Carlsson Tr. 216:14-20, 217:13-16; Pilbrant Tr. 1381:6-10.) Accordingly, even after developing the Phase II formulation, Astra sought to solve these problems.

To develop a new formulation that could be used in Phase III long term clinical trials and sold commercially, Astra tested many potential formulations. Some had good stability in the gastric juice in the stomach, but inadequate shelf-life stability. Others had adequate shelf-life stability but inadequate stability in the stomach. (Carlsson Tr. 183:20-184:10; P609.) Drs. Pilbrant and Lövgren and the other Astra scientists tried numerous approaches to solve the dual, and apparently conflicting, problems of long term stability and adequate gastric acid resistance. (Pilbrant Tr. 1344:3-1345:23.) Including certain alkaline substances in the core as with the Phase II formulation solved the problem of the chemical stability of omeprazole by stabilizing the omeprazole during manufacturing and storage, but it exacerbated the problem of gastric acid resistance. (Pilbrant Tr. 1344:9-23.) During development, the Astra scientists learned that if the amount of alkaline material in the core was increased, this could weaken the enteric coat and decrease gastric acid resistance. This would increase the risk that water would leak in through the enteric coating and promote a reaction between the acidic enteric coating and the alkaline material in the core, which in turn would cause degradation of the enteric coating and worsen gastric acid resistance. (Pilbrant Tr. 1344:24-1345:23, 1610:1-5.) Water permeation has a deleterious effect on the omeprazole core because, if sufficient water diffuses in, it may cause an alkaline solution inside the coating to dissolve the enteric coating from the inside, which, in turn, will worsen gastric acid resistance. (Pilbrant Tr. 1345:12-23.)

To solve the gastric resistance problem without sacrificing stability, Astra tried numerous modifications to the formulation. (See Pilbrant Tr. 1345:24-1349:15.) For example, Drs. Pilbrant and Lövgren tried to make the enteric coating tighter — less permeable to gastric juice. (Pilbrant Tr. 1345:24:-1346:4.) Dr. Pilbrant tried a thicker enteric coating, and he tried to make the enteric coating more hydrophobic, or water-repellent, by adding hydrophobic plasticizers of different kinds. (Pilbrant Tr. 1346:5-1347:4.) Dr. Pilbrant tried adding a water insoluble polymer within the enteric-coating itself to see if that would improve diffusion tightness. (Pilbrant Tr. 1347:5-18.) He tried mixing different enteric coating materials. He even tried putting one enteric coating on top of another to see if that would improve tightness. (Pilbrant Tr. 1347:19-1348:4.) Dr. Pilbrant tried putting an outer coating with a hydrophobic substance on top of the enteric coating, and he tried this with different amounts of the hydrophobic substance. Astra found, however, that if they used only a small amount of hydrophobic substance, it did not improve gastric acid resistance. On the other hand, if they used a large amount of hydrophobic substance outside the enteric coating, this improved gastric acid resistance, but it caused reduced omeprazole release. (Pilbrant Tr. 1348:5-17.) None of these things worked to improve gastric resistance, and repeated attempts to improve the tightness of the enteric coat had failed. (Pilbrant Tr. 1345:9-1349:15.)

Ultimately, Drs. Pilbrant and Lövgren decided to try to use a subcoating between the omeprazole-containing core and the enteric coating. (Pilbrant Tr. 1348:18-22; Lövgren 1786:7-25.) It was thought that a hydrophobic coating, one which would be impermeable to water, might solve the problem, but Astra did not try that approach because they had already experimented with a hydrophobic outer coating and found that it did not work. (Pilbrant 1348:18-1349:11.) Eventually, the Astra scientists decided to experiment with a water soluble subcoat, but it was thought that the approach would not keep water from leaking in through the enteric coating. (Pilbrant Tr. 1349:16-1350:2.) Experimenting with the water soluble subcoat, however, revealed that it actually increased both gastric acid resistance and long term stability. (Pilbrant Tr. 1349:16-1350:6.) The Astra scientists also noticed that the subcoat reduced the sporadic discoloration that could occur during the enteric-coating process as well as the discoloration upon long term storage, which had been observed in the Phase II formulation. (Pilbrant Tr. 1592:6-22.) A formulation that included omeprazole with an alkaline reacting compound ("ARC") in the core, a water soluble subcoat, and an enteric coating was selected for Phase III clinical trials. (Pilbrant Tr. 1339:6-11, 1351:5-10; Lovgren Tr. 1747:22-1748:6.) After testing its Phase III formulation, Astra patented its invention and obtained FDA approval to market Prilosec®. The Phase III formulation proved to be more stable than the Phase II formulation. (Pilbrant Tr. 1720:22-1721:16, 1731:16-19.) The Phase III formulation is the same as the one that Astra ultimately has used on the market, except that the amount of the enteric-coating polymer is slightly increased in the market formulation. (Pilbrant Tr. 1597:5-12.) There are no differences in long term stability between the Phase III formulation and the market formulation. (Pilbrant Tr. 1600:6-20.)

The gastric acid resistance data for the Phase II (not subcoated) omeprazole pellets formulation were typically in the 82%89% range. (P934; Lövgren Tr. 4937:711.) This level of gastric acid resistance was considered unacceptable because, with an 85% gastric acid resistance test limit, many batches would fail the test and have to be discarded. (Lövgren Tr. 4938:124939:22.) The formulation ultimately claimed in the '505 patent, the Phase III formulation, typically exhibited gastric acid resistance of about 96%. (P907; Lövgren Tr. 4940:12-4941:13.) This improved gastric acid resistance was considered important because it greatly reduced the risk of discarding borderline batches. (Lövgren Tr. 4941:14-4942:7.) The Phase III formulation proved to have consistent gastric acid resistance that was well above Astra's 85% requirement and remained stable for over three years on storage. (P907 at AA00075815; Lövgren Tr. 4941:3-4942:2, 4942:10-16.) The first application for omeprazole was filed with the FDA in 1986, and Prilosec® was finally approved for use in the United States in 1989. (Carlsson Tr. 186:12-17.) Astra filed patent applications for its omeprazole formulation inventions in 1986. The formulation described in U.S. Patent Nos. 4,786,505 (the "'505 patent") and 4,853,230 (the "'230 patent") includes the three main elements that Drs. Pilbrant and Lövgren employed to make the Phase III formulation. (Pilbrant Tr. 1321:2-16; P1; P2A.) The commercial Prilosec® formulation is covered by the '505 and '230 patents and is substantially identical to Example 2 of the '505 patent.

C. Patent Litigation Under the Hatch-Waxman Act

These infringement actions arise out of Abbreviated New Drug Applications ("ANDAs") filed by Defendants. The Drug Price Competition and Patent Term Restoration Act, Pub.L. No. 98-417, 98 Stat. 1585 (1984) (codified as amended at 21 U.S.C. § 355 and 35 U.S.C. § 271(e) (1994)), also known as the Hatch-Waxman Act, amended the Federal Food, Drug, and Cosmetic Act ("FDCA"), Pub.L. No. 52-675, 52 Stat. 1040 (1938) (codified as amended at 21 U.S.C. § 301-397 (1994)), to permit filing of an ANDA to expedite FDA approval of a generic version of a drug previously approved by the FDA. See Bayer AG v. Elan Pharm. Research Corp., 212 F.3d 1241, 1244 (Fed.Cir. 2000). Under the Hatch-Waxman Act, an applicant may file an ANDA with the FDA requesting approval to market a generic drug without undergoing the same expensive and time-consuming FDA approval process undergone by the maker of the branded version of the drug, often called the pioneer drug, by (1) demonstrating that the generic drug is the bioequivalent of the branded drug and (2) certifying that manufacturing, marketing and selling the drug will not infringe the patent rights held by the patentee of the pioneer drug.

The statute prescribes a precisely defined four-step procedure for litigating patent disputes between the innovator drug company and the generic applicant. See 21 U.S.C. § 355(j)(2)(A)(vii) et seq. The holder of the New Drug Application for the pioneer drug lists all of its patents that claim the drug or a use of the drug in the book entitled New Drug Products with Therapeutic Equivalence Evaluations (referred to as the "Orange Book") published by the FDA. See 21 U.S.C. § 355(b)(1). In its ANDA, a generic applicant must certify one of the following four statements with respect to the patents listed under the pioneer drug in the Orange Book: no patent information has been filed ("Paragraph I" certification), the patent has expired ("Paragraph II" certification), the patent soon will expire on a specified date ("Paragraph III" certification), or the patent "is invalid or will not be infringed by the manufacture, use, or sale of the new drug" covered by the ANDA ("Paragraph IV" certification). 21 U.S.C. § 355(j)(2)(A)(vii)(I)-(IV). Only one type of certification is pertinent here: a so-called "Paragraph IV" certification. In a Paragraph IV certification, the generic manufacturer seeks to obtain FDA approval before a listed patent expires and asserts that the patent listed in the Orange Book is either not infringed or invalid. Following the issuance of a Paragraph IV certification, the Hatch-Waxman Act requires the generic company to give notice of the Paragraph IV certification to the innovator who listed the patent with the FDA. 21 U.S.C. § 355(j)(2)(B). The FDA can approve an ANDA containing a Paragraph IV certification unless the patent holder files suit within forty-five days of receiving notice of a Paragraph IV certification having been filed with the FDA. 21 U.S.C. § 355(j)(5)(B)(iii); 21 C.F.R. § 314.107(f)(2). If a patent infringement action is timely brought, final marketing approval of the ANDA cannot occur before expiration of thirty months or a decision of a court. See 21 U.S.C. § 355(j)(5)(B)(iii).

The term of Astra's basic omeprazole patent covering the chemical formula for omeprazole and its administration for gastric acid inhibition, U.S. Patent No. 4,255,431 (the "'431 patent") expired on October 5, 2001.*fn7 The '431 patent is not, however, the only patent Astra has listed for omeprazole in the Orange Book. The other patents at issue in this litigation were also listed. Defendants have each issued Paragraph IV certifications against the patents-in-suit. Defendants certified in their ANDA submissions for generic omeprazole that the patents-in-suit are "invalid or will not be infringed by the manufacture, use, or sale" of their generic products. See 21 U.S.C. § 355(j)(2)(A)(vii)(IV). Based on those ANDA filings, Astra filed a patent infringement suit pursuant to 35 U.S.C. § 271(e)(2)(A), alleging that the generic omeprazole formulations for which Defendants seek approval will infringe or induce infringement of the asserted claims.

Although no actual infringement has taken place because Defendants' omeprazole products have not been released in the market, section 271(e)(2)(A) "define[s] a new (and somewhat artificial) act of infringement for a very limited and technical purpose that relates only to certain drug applications." Eli Lilly & Co. v. Medtronic, Inc., 496 U.S. 661, 676, 110 S.Ct. 2683, 110 L.Ed.2d 605 (1990). Section 271(e)(2)(A) provides a patentee with a cause of action for patent infringement based solely upon the filing of an ANDA containing a Paragraph IV certification implicating a plaintiffs patent rights. The artificial infringement arising by operation of law is an integral part of a statutory scheme designed to allow pharmaceutical manufacturers to market, and the public to purchase, generic drugs as soon as possible after the expiration of patents covering the pioneer drug. The infringement suit under section 271(e)(2) permits the patentee, in this case Astra, "to challenge the certification — i.e. to assert inter alia that the commercial manufacture, use or sale of the new drug would infringe its patent." Glaxo, Inc. v. Boehringer Ingelheim Corp., 954 F. Supp. 469, 473 (Conn. 1996) (emphasis added). The patentee's challenge to the certification provides the court with a justiciable controversy, permitting it to efficiently resolve patent issues in advance of the generic drug's release.

As an initial matter, Defendants challenge Astra's standing to assert any method of treatment claims against Defendants on the grounds that there has been no direct infringement, so Astra cannot prove actual intent to induce infringement on Defendants' part. In response, Astra argues that no proof of intent is required because the infringement claims are all cognizable under 35 U.S.C. § 271(e)(2)(A). The question of whether a pioneer drug company holding a patent covering a method of using a drug may sue a generic manufacturer based solely on an ANDA filing is a novel issue of law. See Allergan, Inc. v. Alcon Labs., Inc., 200 F. Supp.2d 1219, 1225 (C.D.Cal. 2002). This court knows of only two other cases dealing squarely with this issue. See Allergan, 200 F. Supp.2d 1219; Warner-Lambert Co. v. Apotex Corp., No. 98 C 4293, 1999 WL 259946 (N.D.Ill. Apr. 8, 1999).

"Statutory interpretation begins with the plain language of the statute. If the text of the statute is clear, this Court looks no further in determining the statute's meaning." United States v. Mendoza, 244 F.3d 1037, 1042 (9th Cir. 2001). When the language of the statute is plain, the duty of interpretation does not arise, and the court is limited to enforcing the statute according to its own terms. Manley v. Secretary of HHS, 18 Cl.Ct. 799, 813 (1989). Consequently, this court looks to the plain language of section 271(e)(2)(A) to determine whether Astra has alleged infringement properly. Section 271(e)(2)(A) states that "it shall be an act of infringement to submit an [ANDA] for a drug claimed in a patent or the use of which is claimed in a patent." 35 U.S.C. § 271(e)(2)(A). The plain language of section 271(e)(2)(A) makes clear that the contemplated act of infringement is the submission of an ANDA for a drug, the use of which is claimed in a patent. Here, Astra filed suit pursuant to section 271(e)(2)(A) alleging that the generic omeprazole products for which Defendants were seeking approval would infringe Astra's patents because Defendants were seeking approval for uses of omeprazole falling squarely within the scope of the asserted method of use claims. Thus, Astra claims that Defendants directly infringed the method of use claims by filing their ANDAs.

At least one other court has concluded that a pioneer drug company may properly bring suit for direct infringement of a patent when an ANDA filed by a generic drug maker directly covers a method of use claimed in the pioneer drug company's patent. In Allergan, the patent at issue covered the drug which was the subject of the ANDA, but it did not cover the particular method of use for which the generic drug company sought approval. In concluding that section 271(e)(2) did not apply, the Allergan court noted that under the Hatch-Waxman statutory framework, it is "the filing of a Paragraph IV certification that puts into process the notice to the patentee allowing it to bring suit under Section 271(e)(2)." Allergan, 200 F. Supp.2d at 1230. When a generic drug company seeks approval for an indication that is not protected by the patent, that generic should not be required to file a Paragraph IV certification, so section 271(e)(2) is not implicated. See Allergan, 200 F. Supp.2d at 1230. Conversely, where a generic drug company seeks approval for an indication that is covered by a patent, a Paragraph IV certification is required, and section 271(e)(2), which entitles a pioneer drug company to bring suit for direct infringement, is implicated. Allergan, 200 F. Supp.2d at 1229-30 ("Infringement actions under Section 271(e)(2) must therefore be limited to the Controlling Use Patents," which that court defined as "all use patents which claim an indication for the drug which the applicant is seeking approval.") (quoting H.R.Rep. No. 98-857(11) at 13, 1984 U.S.C.C.A.N. at 2697). Since the method of use claims for which the court considers infringement proof in this case are controlling use claims, Astra has properly brought suit under section 271(e)(2)(A) for direct infringement. As such, the court need not consider issues related to a claim for inducement under section 271(b), and Astra need not establish any inducement or intent on the part of Defendants to establish infringement of either claim 10 of the '505 patent or claim 13 of the '230 patent, both methods of treating gastrointestinal disease.*fn8

II. Claim Construction

A. Legal Standards

In the first of the two steps necessary to the infringement analysis, the court construes the allegedly infringed patent claims to establish their meaning and scope. See Markman v. Westview Instruments, Inc., 52 F.3d 967, 976 (Fed.Cir. 1995), aff'd, 517 U.S. 370, 116 S.Ct. 1384, 134 L.Ed.2d 577 (1996); Graco, Inc. v. Binks Mfg. Co., 60 F.3d 785, 791 (Fed.Cir. 1995). The interpretation of patent claims through claim construction is a determination made as a matter of law. Markman v. Westview Instruments, Inc., 517 U.S. 370, 384, 116 S.Ct. 1384, 134 L.Ed.2d 577 (1996). The court construes the claims of each patent according to the hierarchy of evidence articulated in Markman, looking first to the intrinsic evidence of the patent. 52 F.3d at 979 ("To ascertain the meaning of claims, we consider three sources: The claims, the specification, and the prosecution history.") (internal citations omitted). The court begins with the language of the disputed claims, which define the scope of the invention and the rights of the patentee. Markman, 517 U.S. at 373-74, 116 S.Ct. 1384; Johnson Worldwide Assocs., Inc. v. Zebco Corp., 175 F.3d 985, 989 (Fed.Cir. 1999); Bell Comms. Research, Inc. v. Vitalink Comms. Corp., 55 F.3d 615, 619 (Fed.Cir. 1995). It is the claims that define the invention. See Autogiro Co. v. United States, 181 Ct.Cl. 55, 384 F.2d 391, 395-96 (1967). They are the measure against which validity and infringement are gauged. See SRI Int'l v. Matsushita Elec. Corp. of Am., 775 F.2d 1107, 1121 (Fed.Cir. 1985). The court may consider not only the language of the disputed claims themselves, but also the language of the unasserted claims. Claims should be construed as they would by a person of ordinary skill in the art. Ekchian v. Home Depot, Inc., 104 F.3d 1299, 1302 (Fed.Cir. 1997). Moreover, the court must construe the words of the claim as of the time of the invention or when the application was first filed. Leggett & Platt, Inc. v. Hickory Springs Mfg. Co., 285 F.3d 1353, 1357 (Fed.Cir. 2002). Thus, the focus in construing disputed claim terms is not the subjective intent of the inventor or examiner; rather, it is the objective test of what one of ordinary skill in the art at the time of the invention would have understood a claim term to mean. See Markman, 52 F.3d at 977.

Each and every word in a claim must be construed to have meaning. Exxon Chemical Patents, Inc. v. Lubrizol Corp., 64 F.3d 1553, 1557 (Fed.Cir. 1995). The terms of a claim are generally given their ordinary and customary meaning as of the date of the application for the patent. See Kopykake Enters. v. Lucks Co., 264 F.3d 1377, 1383 (Fed.Cir. 2001). They must also be read in accordance with the precepts of English grammar. In re Hyatt, 708 F.2d 712, 714 (Fed.Cir. 1983). This strong presumption "in favor of the ordinary meaning of claim language as understood by one of ordinary skill in the art" may be overcome where: "1) the patentee has chosen to become his or her own lexicographer by clearly and explicitly defining the claim term; or 2) where a claim term would deprives the claim of clarity such that there is no means by which the scope of the claim may be ascertained from the language used." Bell Atl. Network Servs., Inc. v. Covad Communications Group, Inc., 262 F.3d 1258, 1268 (Fed.Cir. 2001) (quotations omitted). When a patentee chooses to be his own lexicographer and uses terms in a manner other than their ordinary meaning, the intended definition of the term must be "clearly stated in the patent specification or file history." Vitronics, 90 F.3d at 1582; see also Novo Nordisk of N. Am. v. Genentech, Inc., 77 F.3d 1364, 1368 (Fed. Cir. 1996); Intellicall, Inc. v. Phonometrics, Inc., 952 F.2d 1384, 1387 (Fed.Cir. 1992).

In that respect, resort to the specification provides guidance. See Vitronics, 90 F.3d at 1582. The court must look to the specification and the file history to see if the inventor varied the ordinary meaning of particular claim terms or if a claim term is unclear. Phonometrics, Inc. v. N. Telecom Inc., 133 F.3d 1459, 1466 (Fed.Cir. 1998). Specifications can be the "single best guide to the meaning of a disputed term" and, therefore, are "always highly relevant to the claim construction analysis." Novo Nordisk A/S v. Becton Dickinson & Co., No. 96 Civ. 9506, 2000 WL 294852, at *2 (S.D.N.Y. Mar. 21, 2000); see Comark Communications, Inc. v. Harris Corp., 156 F.3d 1182, 1187 (Fed.Cir. 1998) (using specifications to ascertain the meaning of the claim term as it is used by the inventor in the context of the entirety of his invention); Amhil Enters. Ltd. v. Wawa, Inc., 81 F.3d 1554, 1559 (Fed.Cir. 1996) (recognizing that the "entire specification" should be considered in interpreting claim language). A patentee need not deliberately or precisely define a term in a lexicographical manner, but may provide a definition by implication. Vitronics, 90 F.3d at 1582. Thus, the Court of Appeals for the Federal Circuit has "specifically held that the written description of the preferred embodiments can provide guidance as to the meaning of the claims" that are to be construed, "even if the guidance is not provided in explicit definitional format." Bell Atlantic Network Servs., Inc. v. Covad Communications Group, Inc., 262 F.3d 1258, 1268-70 (Fed.Cir. 2001) (citing SciMed Life Sys., Inc. v. Advanced Cardiovascular Sys., Inc., 242 F.3d 1337, 1344 (Fed.Cir. 2001)).

This court must be careful when turning to the specification for guidance during claim construction. Examples may aid in the proper construction of a claim term; however, the scope of a claim is not necessarily limited by the examples. Ekchian v. Home Depot, Inc., 104 F.3d 1299, 1303 (Fed.Cir. 1997). Similarly, preferred embodiments like those often present in a specification are not claim limitations. Laitram Corp. v. Cambridge Wire Cloth Co., 863 F.2d 855, 865 (Fed.Cir. 1988). It is improper either to limit the claim to preferred embodiments or examples in the specification or to broaden the scope of a claim to include embodiments not covered by the claim language. See Novo Nordisk of N. Am. v. Genentech, 77 F.3d 1364, 1369 (Fed.Cir. 1996); Transmatic, Inc. v. Gulton Indus., Inc., 53 F.3d 1270, 1278 (Fed.Cir. 1995); compare Ekchian, 104 F.3d at 1303, with Philip v. Mayer Rothkopf Indus., Inc., 635 F.2d 1056, 1061 (2d Cir. 1980). This is not to say that resort to the specification should be avoided. The court can and should use the specification to define claim terms. See Phonometrics, Inc. v. Northern Telecom, Inc., 133 F.3d 1459, 1466 (Fed.Cir. 1998) ("[Patentee] of course argues that additional limitations cannot be imported into a claim from the written description. We may, however, construe a specifically claimed limitation in light of the specification, which is all we do here."); Ethicon Endo-Surgery, Inc. v. United States Surgical Corp., 93 F.3d 1572, 1578 (Fed.Cir. 1996) ("Here, the district court did not import an additional limitation into the claim; instead, it looked to the specification to aid its interpretation of a term already in the claim, an entirely appropriate practice.").

As noted, aside from the claim language and the specification, a proper claim construction analysis requires consideration of the patent prosecution history. Markman, 52 F.3d at 980 ("The court has broad power to look as a matter of law to the prosecution history of the patent in order to ascertain the true meaning of language used in the patent claims."). The specification and prosecution history are both important evidence of "the problem the inventor was attempting to solve," which is critical to properly construing the scope and meaning of the claims of the patent. CVI/Beta Ventures, Inc. v. Tura LP, 112 F.3d 1146, 1160 (Fed.Cir. 1997) (citing Applied Materials v. Advanced Semiconductor Materials, 98 F.3d 1563, 1573 (Fed.Cir. 1996)). Like the specification, the prosecution history is intrinsic evidence and is "often of critical significance in determining the meaning of the claims." Vitronics, 90 F.3d at 1582; see Alpex Computer Corp. v. Nintendo Co. Ltd., 102 F.3d at 1220. In addition, prior art considered by the United States Patent and Trademark Office ("USPTO") during prosecution of a patent comprises intrinsic evidence for claim construction. Vitronics, 90 F.3d at 1583. These three items — the claim language, the specification, and the prosecution history — are the intrinsic evidence and are the primary evidentiary sources for claim construction.

In most situations, a thorough consideration of the intrinsic evidence will resolve any ambiguity in a disputed claim term. Vitronics, 90 F.3d at 1583. When the meaning cannot be determined by intrinsic evidence, a court may turn to extrinsic evidence to construe the claims in a patent. Vitronics, 90 F.3d at 1584. Extrinsic evidence "consists of all evidence external to the patent and prosecution history, including expert and inventor testimony, dictionaries, and learned treatises" and may be useful to show the state of the art at the time of the invention. Markman, 52 F.3d at 980. "The court may, in its discretion, receive extrinsic evidence in order `to aid the court in coming to a correct conclusion' as to the `true meaning of the language employed' in the patent." Markman, 52 F.3d at 980 (internal quotations omitted); see also Key Pharms. v. Hercon Labs. Corp., 161 F.3d 709, 716 (Fed.Cir. 1998) (holding that trial court can hear extrinsic evidence to educate itself about patent and relevant technology, but may not use extrinsic evidence to vary or contradict claim terms). When consideration of extrinsic evidence is necessary to understand the meaning of claim terms, the court may consider testimony on how people skilled in the art would understand technical terms in the claims. Cybor Corp. v. FAS Techs., Inc., 138 F.3d 1448, 1475 (Fed.Cir. 1998) ("The objective of claim interpretation is to discern the meaning of the claim terms to one of ordinary skill in the art at the time of the invention.") Where the intrinsic evidence unambiguously describes the scope of the patent, however, it is improper to rely on extrinsic evidence to alter the meaning of the claims. See Vitronics, 90 F.3d at 1584. Thus, in most instances, a thorough consideration of the intrinsic evidence alone will resolve any ambiguity in a disputed claim term, and the court may not rely on extrinsic evidence to construe the scope of a claim term unless the court first finds that the term is ambiguous even in light of the intrinsic evidence. See Vitronics, 90 F.3d at 1583-85.

B. The '505 and '230 Patents*fn9

Astra filed the patent application that led to the '505 patent in the USPTO on April 20, 1987. Astra also filed the patent application that led to the '230 patent on April 20, 1987. Both applications claim priority based on a United Kingdom patent application filed on April 30, 1986. There are no substantive differences between either the '505 patent application or the '230 patent application and the British priority document. (Lovgren Tr. 1742:24-1743:3, 1745:3-8; compare P1, and P2A, with P1056 and P8A.)*fn10 The '505 patent discloses particular oral pharmaceutical formulations for the drug molecule omeprazole, processes for making those formulations, and methods of treating gastrointestinal disease using those formulations. (P1, col. 1:5-11.) The '505 patent also describes some of the difficulties involved in making an omeprazole formulation. (See, e.g., P1, col. 1:21-34.) The problems discussed in the specifications of the '505 and '230 patents include the very same problems identified in the development history described above. (See P1, cols. 115; P2A cols. 1-4.) For example, omeprazole is unstable in stomach acid, where it degrades rapidly unless special precautions are followed. (See, e.g., P1, col. 1:1739.) The omeprazole molecule is also sensitive to moisture and organic solvents. (P1, col. 1:33-34.) Despite that sensitivity to solvents, omeprazole is not very soluble in the water found in bodily fluids. (Pilbrant Tr. 1325:1-3.) Consequently, the drug is difficult to handle and formulate.

The '505 patent claims a new formulation that, among other things, permits the omeprazole drug molecule to pass unharmed through the stomach's acidic environment and to dissolve rapidly in the upper portion of the small intestine. (P1, col. 3:14-18, col. 5:19-58.) The '505 patent inventors were faced with multiple problems of improving manufacturing stability, storage stability, and stability of the formulation in the stomach while maintaining the bioavailability of the omeprazole molecule.*fn11 (P1, col. 1:40 — col. 2:13, col. 14:64 — col. 16:40.) The solution to the multiple stability problems associated with omeprazole devised by the inventors was a formulation that comprises (1) a core region containing omeprazole and an ARC or an alkaline salt of omeprazole optionally mixed with an ARC; (2) an inert subcoating that is water soluble or rapidly disintegrating in water and disposed on the core region; and (c) an outer enteric layer disposed on the subcoating. (See, e.g., P1, col. 3:20-32.) As a result, the omeprazole in the patented formulation is available for absorption into the bloodstream, while, at the same time, possessing superior stability. (P1, col. 3:14-20.)

Like the '505 patent, the '230 patent relates to particular oral pharmaceutical formulations, processes for making those formulations, and methods of treating gastrointestinal disease using those formulations. (P2A, col. 1:5-12.) The '230 patent differs from the '505 patent in that it covers a class of benzimidazole compounds, including omeprazole, and their salts, not just omeprazole. (P2A, col. 1:28 — col. 2:33.) The intrinsic evidence for both patents overlaps. The '505 and '230 patent claims share much common language, common background provided by their specifications, and prosecution histories that overlapped both in time and in substance. Not surprisingly, because the '505 and '230 patents have the same inventors and their inventive and claimed subject matters overlap, the claim language for those two patents also overlaps. The court acknowledges that the claims in each of these patents must be construed independently. Lemelson v. TRW, Inc., 760 F.2d 1254, 1267 (Fed.Cir. 1985) ("[T]he scope of each individual claim must be examined on its own merits, apart from that of other claims, even in the same patent."). However, the claims of the '505 and '230 patents that have been asserted against Defendants often are directly paired together with no material differences between the corresponding claims in the two patents; moreover, the parties' claim construction arguments are, for the most part, identical for the paired claims of the '505 and '230 patents. Therefore, the court will analyze the disputed terms within the '505 and '230 patents by first addressing the terms occurring within corresponding claims in both patents. The court will then address the few remaining claim construction issues that are pertinent to the '230 patent alone.

The first claim of the '505 patent specifies a pharmaceutical product that includes three elements:

1. An oral pharmaceutical preparation comprising

(a) a core region comprising an effective amount of a material selected from the group consisting of omeprazole plus an alkaline reacting compound, an alkaline omeprazole salt plus an alkaline reacting compound and an alkaline omeprazole salt alone;
(b) an inert subcoating which is soluble or rapidly disintegrating in water disposed on said core region, said subcoating comprising one or more layers of materials selected from among tablet excipients and polymeric film-forming compounds; and
(c) an outer layer disposed on said subcoating comprising an enteric coating.

(P1, col. 16:42-54.) Claim 1 of the '230 patent, also a product claim, specifies:

1. A pharmaceutical preparation comprising:

(a) an alkaline reacting core comprising an acid-labile pharmaceutically active substance and an alkaline reacting compound different from said active substance, an alkaline salt of an acid-labile pharmaceutically active substance, or an alkaline salt of an acid-labile pharmaceutically active substance and an alkaline reacting compound different from said active substance;
(b) an inert subcoating which rapidly dissolves or disintegrates in water disposed on said core region, said subcoating comprising one or more layers comprising materials selected from the group consisting of tablet excipients, film-forming compounds and alkaline compounds; and
(c) an enteric coating layer surrounding said subcoating layer, wherein the subcoating layer isolates the alkaline reacting core from the enteric coating layer such that the stability of the preparation is enhanced.

(P2A, col. 13:1-20.)

The preamble of both claims 1 calls for a "pharmaceutical preparation," which must be oral in the case of the '505 patent. This simply means any dosage form taken via the mouth. (See, e.g., P1, Ex. 2, col. 7:55 — col. 8:34 (pellets); P1, Exs. 9, 10, col. 11:43 — col. 12:36 (tablets).) "Comprising" is a transitional term used in patent claims to mean that the claim includes, but is not limited to, the elements thereafter presented. Crystal Semiconductor Corp. v. TriTech Microelectronics Int'l, Inc., 246 F.3d 1336, 1348 (Fed.Cir. 2001) ("In the parlance of patent law, the transition `comprising' creates a presumption that the recited elements are only a part of the device, that the claim does not exclude additional, unrecited elements."). In the context of the preamble of claims 1 of the '505 and '230 patents, then, "comprising" means that parts (a), (b), and (c) of claims 1 must be present, but that other elements may also be present. Thus, claims 1 contain three common structural components that are recited in subparagraphs (a), (b), and (c) in both the patents, Subparagraphs (a) and (b) of each claim contain the claim limitations that are strongly contested by the parties.

C. Part "(a)" of Claims 1

1. The Terms "Core" and "Core Region"

The court finds that the terms "core" and "core region" are synonymous in the context of the '505 and '230 patents; thus, the court construes the term "core region" to have the same meaning as the term "core." This construction is apparent from the language of the claims themselves. The term "core region" does not appear anywhere in either patent except in certain claims, including claims 1 of the '505 and '230 patents. In those claims of the '505 and '230 patents where the terms "core region" and "core" appear, they are used interchangeably. For example, claim 1 of the '505 patent requires "[a]n oral pharmaceutical preparation comprising (a) a core region." (P1, col. 16:4243 (emphasis added).) Claim 5 of the '505 patent, however, requires "[a] preparation according to claim 1 wherein the alkaline core comprises. . . ." Claim 5 depends from claim 1 and references "the alkaline core." (P1, col. 16:65-66 (emphasis added).) Thus, the term "core" in claim 5 must be referring to the "core region" in claim 1. Claim 12 of the '505 patent also refers back to the "core region" in claim 1 when it requires "[a] preparation according to claim 1, wherein the core comprises. . . ." (P1, col. 18:4-5 (emphasis added).) Similar examples occur in the claims of the '230 patent. Indeed, the only place where the term "core region" appears in the '230 patent is in element (b) of claim 1, where the term "core region" is preceded by the word "said," which in patent claim drafting indicates that the specific claim term "core region" has been previously introduced. Manual of Patent Examining Procedure, 7th ed., § 2173.05(e), at 2100168. Since the phrase "said core region" in claim 1(b) has no antecedent basis and refers back to the term "alkaline reacting core" in element (a), the term "core region" in element (b) must be referring to the term "core" in element (a). Finally, there is no language in the specification or the claims of either patent to suggest what, if anything, beyond the core region would be encompassed by the term "core"; accordingly, "core region" must be defined to be synonymous with the term "core" because "a patent claim may be interpreted only as broadly as its unambiguous scope." Ethicon Endo-Surgery, Inc. v. U.S. Surgical Corp., 93 F.3d 1572, 1581 (Fed.Cir. 1996) (citations omitted).*fn12

The court defines the terms "core" and "core region" to mean the portion of the patented preparation that lies beneath the subcoating and contains the active ingredient and, in the case of omeprazole as the active ingredient, an ARC. The claim language itself expressly states that the "core region" is the portion of the formulation that lies beneath the inert subcoating, which is "disposed on" the core region. (P1, col. 16:48-50; P2A, col. 13:10-11.) Also, the discussion of the subcoating in the patents makes it clear that the entire mixture, whether called the "alkaline core" or the "alkaline reacting core" is the core to which the subcoating is applied. (P1, col. 4:3-58, see particularly col. 4:4, 13, 31; P2A, col. 8:66 — col. 9:52, see particularly col. 8:67, col. 9:6-8.)

The court's construction of the terms "core" and "core region" includes cores made by conventional pharmaceutical procedures. (See P1, col. 3:1-11, col. 16:43-47.) The primary dispute concerning these terms is whether they encompass cores wherein the active substance is coated or sprayed onto a sugar seed. Based on the briefing submitted on claim construction as well as the evidence introduced at trial, the court finds that, in the abstract, a person of ordinary skill in the art could consider the sugar sphere itself to be a "core," but that same person could also consider the sugar sphere plus the active layer sprayed onto it to be a "core."*fn13 Defendant Genpharm's construction for the term "core," which would exclude cores made by layering onto sugar spheres, incorrectly focuses attention on this abstract situation and away from the meaning a person of ordinary skill in the art reading these two patents would attach to the term "core." For example, Genpharm cites to a definition for the term "core" in a non-technical dictionary. Cf. Hoechst Celanese Corp. v. BP Chemicals Ltd., 78 F.3d 1575, 1580-81 (Fed.Cir. 1996) (finding general dictionary definition secondary to specific meaning of technical term as used and understood by those of ordinary skill in the art). Even though the term "core" when applied to coated sugar spheres might be limited to the sphere itself in the abstract, the court finds that in the context of these two patents a person of ordinary skill in the art would understand the term "core" to encompass not only the sugar sphere but also the active layer sprayed or coated onto the sugar sphere.

The patent specifications expressly state that cores may be made "by conventional pharmaceutical procedures," (P1, col. 3:6668; P2A, col. 8:62-64), and some of the conventional pharmaceutical procedures that may be used to prepare cores are expressly disclosed in the patent specifications and file histories. Conventional pharmaceutical procedures for making cores may include, but are not necessarily limited to, cores formed by extrusion and spheronization, cores made by layering on sugar seeds, and cores made by tabletting techniques. (See, e.g., P1, col. 1:57 — col. 2:4, col. 3:1 — col. 4:2, col. 16:43-47 (the powder mixture is formulated into pellets, tablets or capsules, which are used as cores for further processing, such as applying the subcoat) (emphasis added); see also Story Tr. 3737:10-13 (testifying that the technique of layering active drug on sugar sphere seeds was known prior to 1986); P921 at 12:3-4, 14:20-15:3.) Tablet cores are found in Example 1 of the '505 patent. (P1, col. 6:29-65.) Extruded and spheronized cores are described in Example 2. (P1, col. 7:55 — col. 8:34.) The '505 patent specification also expressly references active-coated sugar seeds as "cores." The '505 patent specification states that WO No. 85/03436 (the "'436 application") describes pharmaceutical preparations containing cores, (P1, col. 3:1-2), and the '436 application, a part of the prosecution history, acknowledges that active coated sugar seeds are a type of core "widely used in the known art." (Astra's Cl. Constr. Mem., Ex. 4, '436 application at 12:4-19; App. 1, '505 Prosecution History at 166.)

Contrary to arguments made by Second Wave Defendants Mylan and Eon, Astra's citation to the '436 application in the '505 and '230 patents and their file histories does not serve as a disclaimer of a sugar core with a layer of the active ingredient. The '505 and '230 patents never explicitly adopt an active-coated sugar core as part of one of the examples or preferred embodiments for the claimed invention described in the specification; however, the specification need not describe every possible way of making the product. SRI Int'l v. Matsushita Elec. Corp. of Am., 775 F.2d 1107, 1121-22 (Fed.Cir. 1985). Far from expressly disclaiming the method of laying the active ingredient on a sugar sphere that is described in the '436 application cited in the patents, Astra claimed cores formed by that method in its patent by claiming any formulation with cores made by conventional pharmaceutical techniques.

Defendant Genpharm would graft onto the claims a requirement of homogeneity in order to exclude a core that is built on a sugar seed. (See Story Tr. 3712:4-18, 3719:7-3720:5, 3725:2-13, 3720:12-3721:5 (testifying that one of ordinary skill in the art would conclude that "core" as used in the '505 and '230 patents is a homogenous mixture of omeprazole, alkaline compounds, and excipients, with the omeprazole uniformly distributed throughout the core).) For intrinsic support within the '505 patent, Genpharm relies on the sentences bridging columns 3 and 4 of the '505 patent, which describe using a mixture of omeprazole and other materials to form "small beads" by conventional procedures, which are "used as cores for further processing." (See P1, col. 3:66 — col. 4:2; see also P2A, col. 8:62-65.) The flaw in Genpharm's logic is reading the reference to a powder mixture "formulated into small beads" as excluding a mixture coated onto sugar seeds. There is no question that coating a sugar seed with an active substance is a conventional procedure, and nothing in the language Genpharm highlights excludes coating the mixture onto sugar seeds to form the small beads.

Genpharm also relies on references in the patents to the subcoating as the "first layer." (See, e.g., P2A, col. 8:1-3.) Those references, however, concern the first layer of the invention — the subcoating. They do not exclude making small beads using the conventional sugar seed process before applying the "first layer" of the invention, which is the subcoating.*fn14 Genpharm's definition is also based on consideration of a subset of the examples included in the '505 patent specification. By requiring a homogenous core, Genpharm adopts a definition for "core" and "core region" that is limited to those cores made by particular processes, which do not include cores made by spraying active ingredients onto a sugar seed. Since it is improper to read a limitation from the specification into the claims or to limit the claims to examples in the specification, see Tate Access Floors, Inc. v. Maxcess Techs., Inc., 222 F.3d 958, 966-67 (Fed.Cir. 2000); Ekchian v. Home Depot, Inc., 104 F.3d 1299, 1303 (Fed.Cir. 1997), the court will not limit the definition of the terms "core" and "core region" to exclude cores made by spraying or coating a sugar seed. The claims themselves do not contain any process limitations, and, as such, cores produced by any "conventional pharmaceutical procedure" are covered by claim 1.

Genpharm's own Development Report refers to the nonpareil sugar seed together with the active, omeprazole-containing drug layer and HPMC subcoating as the "protected core." (P20 at G13549; P19 at G13038.) Even Dr. Story, Genpharm's expert, admitted at trial that he had used the word "core" to refer to a sugar seed that is layered with active ingredients during his testimony in Australia concerning a foreign counterpart to the '505 patent. (Story Tr. 3736: 2-4, 3805:12.-3806:12.) The process Dr. Story was describing in his Australian testimony is the process used by Genpharm to build up the active material on its sugar seeds. (Story Tr. 3805:12-3806:12.) Dr. Story agreed that formulation scientists, including those who worked with him, would interpret the term "core" to mean an inner seed with an active coating. (Story Tr. 3803:13-18.) Dr. Story further agreed that the term "core" in column 3 of the '505 patent refers to the portion of the formulation where the omeprazole is mixed with the ARC, (Story Tr. 3800:20-3801:2; see P1, col. 3:20-26), and that the reference to a "powder mixture" in that same column is a mixture of omeprazole and the ARC and other excipients, which can be formulated into, among other things, "pellets," (Story Tr. 3801:6-19; see P1, col. 3:66-68). In the context of the '505 patent, "pellets" means "cores." (Story Tr. 3801:20-22.) Finally, Genpharm's own purported person of ordinary skill in the art, Dr. Marshall, when preparing the expert reports Genpharm submitted, identified the ingredients of a "Formulation of cores/granules" to include both "Omeprazole" and the "Sucrose [sugar] spheres." (P1299, Marshall Report No. 3, at 4.) In summary, Dr. Story's testimony at trial in support of Genpharm's claim construction is outweighed by the intrinsic evidence and the testimony of those skilled in the art, including Dr. Story himself. Accordingly, the court declines to adopt Genpharm's proposed claim construction, which would graft onto the core a requirement for complete homogeneity and unnecessarily limit the conventional pharmaceutical processes by which the core could be created by excluding the process of layering the drug substance onto sugar spheres.

2. The Term "Alkaline Reacting Compound"

Subparagraph (a) of claim 1 of the '505 patent requires that the core contain a "material selected from the group consisting of omeprazole plus an alkaline reacting compound, an alkaline omeprazole salt plus an alkaline reacting compound and an alkaline omeprazole salt alone." (P1, col. 16:43-47.) That claim language presents alternatives any one of which may be present to meet the claim requirement. See In re Driscoll 562 F.2d 1245, 1249 (C.C.P.A. 1977). Claim 1 of the '230 patent presents a similar set of three options for the core: an acid labile pharmaceutically active substance and an ARC, an alkaline salt of an acid labile pharmaceutically active substance, or an alkaline salt of an acid labile pharmaceutically active substance and an ARC. (See P2A, col. 13:2-9.) The acid labile compound and the ARC must be different substances. (P2A, col. 13:2-9.) Astra asserts infringement by all Defendants only under the first of the three options: omeprazole, which is an acid-labile pharmaceutically active substance, plus an ARC.

The term "alkaline" standing on its own represents a concept that is well understood by those skilled in the arts of formulation and chemistry. It is fundamental chemistry that an "alkaline" substance is a basic substance — a non-acidic, non-neutral compound having a pH greater than 7.*fn16 (See Auslander Tr. 2515:4-2516:9; Pilbrant Tr. 1459:24-1460:4.) While the ordinary meaning of the word "alkaline" may be clear, the court finds that without resort to the specification the meaning of the phrase "alkaline reacting compound" is not clear now and was not clear at the time of the patent. See Bell Atlantic Network Servs., Inc. v. Covad Communications Group, Inc., 262 F.3d 1258, 1268 (Fed.Cir. 2001). Rather, the phrase "alkaline reacting compound" is a shorthand term that the patentees created for use in the '505 and '230 patents, and one of ordinary skill in the art would not understand what is meant by this phrase prior to issuance of the '505 and '230 patents. (See Auslander Tr. 2513:14-2514:9; Story Tr. 3759:13-18; see also Langer Tr. 386:17-24 (analyzing meglumine in terms of disclosure in specification).) Since the phrase "alkaline reacting compound" has no unambiguous meaning outside the '505 and '230 patents, it must be defined in the context of those patents. Since the patentees chose to act as their own lexicographer, the court must rely on the intrinsic evidence, particularly the specification, to determine the meaning of the phrase See Itron, Inc. v. CellNet Data Systems, Inc., 34 F. Supp.2d 1135, 1141 (Minn. 1999) (If the inventors choose to be "their own lexicographers" with regard to a particular claim term, "the court must adopt their definition."), aff'd per curiam, 243 F.3d 563 (Fed.Cir. 2000). Here the patentees' own testimony leaves no doubt that the specifications of the '505 and '230 patents are the "single best guide" to the meaning of the term "alkaline reacting compound." See Bell Atlantic, 262 F.3d at 1268 (quoting Vitronics, 90 F.3d at 1582). Kurt Lövgren, one of the inventors, testified that the terms "alkaline reacting compound" and "alkaline buffering compound" mean the same thing in the '505 and '230 patents. (Lövgren Dep. Tr. 548:2-11.) He further testified that the definition of those terms was to be found in the specifications of the patents. (Id. at 543:11-18 ("The meaning of alkaline buffering compound is a meaning and an understanding that is obtained in the specification of the patent.").)

The clearest indication of what the phrase "alkaline reacting compound" means in the '505 and '230 patents is found in the detailed description of the invention under the subheading "Cores." (See Auslander Tr. 2520:1-9; Langer Tr. 653:24654:6.) The term "alkaline reacting, otherwise inert pharmaceutically acceptable substance (or substances)" is characterized in the patent specifications. Specifically, the patents state:

Omeprazole is mixed with inert, preferably water soluble, conventional pharmaceutical constituents to obtain the preferred concentration of omeprazole in the final mixture and with an alkaline reacting, otherwise inert, pharmaceutically acceptable substance (or substances), which creates a "micro-pH" around each omeprazole particle of not less than pH ? 7, preferably not less than pH ? 8, when water is adsorbed to the particles of the mixture or when water is added in small amounts to the mixture.
The stabilizing, high pH-value in the powder mixture can also be achieved by using an alkaline reacting salt of omeprazole such as the sodium, potassium, magnesium, calcium etc. salts of omeprazole, which are described in e.g. EP-A2-No. 124 495, either alone or in combination with a conventional buffering substance as previously described.

(P1, col. 3:38-47, 59-65; see also P2A, col. 8:33-42.) This portion of the specifications defines the ARC — namely, an alkaline or basic compound that must create a micropH around the omeprazole particles of not less than pH 7. (Auslander Tr, 2520:12521:13; Langer Tr. 652:18-654:22.) See Vitronics Corp., 90 F.3d at 1582; Itron, Inc., 34 F. Supp.2d at 1141. This description of the ARC is recited in the patent "as being the invention itself and not only one way of utilizing it;" therefore, the scope of the claims, which would otherwise be utterly unclear, must be limited to the definition of the ARC provided here. See Modine Mfg. Co. v. U.S. Int'l Trade Comm'n, 75 F.3d 1545, 1551 (Fed.Cir. 1996), abrogated on other grounds, Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co., 234 F.3d 558 (Fed.Cir. 2000). Because the proper definition is found only in the specification, the scope of the term "alkaline reacting compound" is limited by the disclosure in the specification. Had Astra wanted broader disclosure, they should have used terms that would have been understood more broadly. See generally Superior Fireplace Co. v. Majestic Prods. Co., 270 F.3d 1358 (Fed.Cir. 2001).

After defining the term "alkaline reacting compound," the specifications of both patents then proceed to list numerous substances that the inventors considered to be ARCs. (See, e.g., P1, col. 3:47-59.) Alkaline reacting compounds

can be chosen among, but are not restricted to substances such as the sodium, potassium, calcium, magnesium and aluminium salts of phosphoric acid, carbonic acid, citric acid or other suitable weak inorganic or organic acids; substances normally used in antacid preparations such as aluminium, calcium and magnesium hydroxides; magnesium oxide or composite substances, such as Al2O3•6MgO•CO2•12H2O (Mg6Al2 (OH)16 CO3•4H2O), MgO•Al2O3•2SiO2•nH2O or similar compounds; organic pH-buffering substances such as trihydroxymethylaminomethane or other similar, pharmaceutically acceptable pH-buffering substances.

(P1, col. 3:47-59; see also P2A col. 8:43-55.) Based on the claim language, these and other disclosures in the specifications of the patents, the statements Astra made about the prior art in the patents themselves and during the prosecution history, and the admissions of Astra's own experts, the court finds that an alkaline reacting compound is (1) a pharmaceutically acceptable alkaline, or basic, substance having a pH greater than 7 that (2) stabilizes the omeprazole or other acid labile compound by (3) reacting to create a micro-pH of not less than 7 around the particles of omeprazole or other acid labile compound.

a. The ARC Must Be Alkaline

Numerous dictionaries and treatises confirm that the word "alkaline" refers to a basic substance having a pH of greater than 7. (See Auslander Tr. 2515:13-2516:9.) The court is free to consult dictionaries at any time to help determine the meaning of the claim terms, provided that the dictionary definition does not contradict any definition found in or ascertained by a reading of the patent documents. Vitronics, 90 F.3d at 1584 n. 6; see also Interactive Gift Express, Inc. v. Compuserve, Inc., 256 F.3d 1323, 1332 n. 1 (Fed.Cir. 2001). So, assuming that the patentees' definition does not contradict the plain meaning of the word "alkaline" as revealed in dictionaries and technical treatises, the claimed ARC in the '505 and '230 patents must be a non-acidic, non-neutral compound having a pH greater than 7. Various disclosures in the specifications of the '505 and '230 patents confirm that an alkaline reacting compound is, first and foremost, an alkaline or basic compound. The patent specifications indicate that omeprazole is susceptible to degradation in acid media and that the degradation reaction "proceeds rapidly" in neutral media, like pH 7, "while at higher pH values the stability in solution is much better." (P1, col. 1:21-29; P2A, col. 8:11-17.) Thus, the patent teaches one of ordinary skill in the art that the ARC, which is in direct contact with the omeprazole, cannot be acidic or neutral, but must be a basic compound with a pH of greater than 7. (Auslander Tr. 2516:10-2517:10.) Indeed, the specifications of the '505 and '230 patents distinguish a prior art invention, British Patent GB-A-No. 1,485,676 (the "'676 patent"), from the invention of the '505 and '230 patents, by explaining that the prior art formulation could not be adapted for use with omeprazole because "the presence of an acid in contact with omeprazole in the cores would give a result that omeprazole [would be] degraded." (P1, col. 2:59-68 (emphasis added); see also P2A, col. 5:25-35.) Thus, this portion of the patent specification emphasizes to one of ordinary skill in the art that the formulation cannot contain an acidic compound in contact with omeprazole. (Auslander Tr. 2517:17-2519:4.) Moreover, the Outline of the Invention section of each patent emphasizes that the ARC is, first and foremost, an alkaline compound. (P1 col. 3:13-21 ("Cores containing omeprazole mixed with alkaline compounds"); P2A col. 7:61-66; see Auslander Tr. 2519:5-25). The '505 and '230 patent specifications go on to list various types of compounds as examples of ARCs within the meaning of the patents. (See P1, col. 3:47-59; P2A, col. 8:43-55.) All of the examples listed in the specifications are well recognized alkaline substances. (Auslander Tr. 2521:232522:12.) Even further light is shed on the fact that "alkaline reacting substances" must be basic when it is considered that the claims of the '505 and '230 patents both allow for the absence of such a substance only when omeprazole is formulated as an "alkaline omeprazole salt." The '505 patent, for example, references a European Patent, EP-A2-No. 124,495 to describe those salts — all of which are basic. (P1, col. 3:59-65.) Thus, this disclosure in both patents teaches one of ordinary skill in the art that an ARC must be alkaline, and cannot be acidic or neutral.

The prosecution history of each patent confirms the court's construction of the term "alkaline reacting compound" to require alkalinity. During the prosecution of the application that issued as the '505 patent, the patent examiner rejected the application based on several references. (G2, Office Action of 12/1/87, at 2-3.) One of those references was the '676 patent. (Id.) As discussed in the '505 patent specification, this reference describes the use of a core containing "pharmaceutically acceptable acid" with the active drug in the core. (P1, col. 2:59-69.) In response to the rejection, Astra amended the claims in its application and, while referring specifically to the core containing omeprazole and the ARC, argued that "[a]ccording to the invention, the omeprazole is either in the form of an alkaline salt, or is compounded with an alkaline material." (G2, Amendment of 3/1/8, at 5 (emphasis added).) This discussion, in the context of the claimed invention, unambiguously states that the omeprazole is compounded with an alkaline material and confirms that the ARC must be an alkaline material with a pH greater than 7. (Auslander Tr. 2530:6-13; see generally Auslander Tr. 2528:25-2530:13.) In that same amendment, Astra further stated that "an acid containing core would be unsuitable for use with omeprazole because the acid would degrade the omeprazole." (G2; Amendment of 3/1/88, at 8.) This strongly teaches one of ordinary skill in the art that the ARC, which is in direct contact with the omeprazole in the formulation, must not be acidic. (Auslander Tr. 2530:14-2531:11.) Astra is correct that this last statement, in isolation, might be considered a general description of the invention in the prosecution history that would not be understood to limit the invention. See York Prods., Inc. v. Central Tractor Farm & Family Ctr., 99 F.3d 1568, 1575 (Fed.Cir. 1996) ("Unless altering claim language to escape an examiner rejection, a patent applicant only limits claims during prosecution by clearly disavowing claim coverage."). The entire March 1, 1988, amendment, however, makes it clear that Astra was explaining the meaning of claim language to escape the examiner's rejection, thereby disavowing claim coverage. Arguments and amendments made during the prosecution of a patent application must be examined to determine the meaning of terms in the claims. Southwall Techs., Inc. v. Cardinal IG Co., 54 F.3d 1570, 1576 (Fed.Cir. 1995). The prosecution history limits the interpretation of the claim terms so as to exclude any interpretation that was disclaimed during prosecution. Id.; ZMI Corp. v. Cardiac Resuscitator Corp., 844 F.2d 1576, 1580 (Fed.Cir. 1988). Simply put, claims may not be construed one way in order to obtain their allowance and in a different way when asserted against an accused infringer. Southwall, 54 F.3d at 1576; Unique Concepts, Inc. v. Brown, 939 F.2d 1558, 1562 (Fed.Cir. 1991); Lemelson v. General Mills, Inc., 968 F.2d 1202, 1206 (Fed.Cir. 1992) ("[T]he prosecution history gives insight into what the applicant originally claimed as the invention, and often what the applicant gave up in order to meet the Examiner's objections."). In a December 18, 1988 amendment made during the prosecution of the '230 patent that occurred simultaneously with that of the '505 patent, the Astra applicants attached the identical amendment, which included the same arguments for patentability as discussed with respect to the '505 patent. Accordingly, these unambiguous statements in the prosecution histories of the '505 and '230 patents further support the interpretation that the ARC must be alkaline. See, e.g., Southwall Techs., Inc., 54 F.3d at 1576; see also Desper Products, Inc. v. QSound Labs., Inc., 157 F.3d 1325, 1335-36 (Fed.Cir. 1998). Indeed, having affirmatively relied on this interpretation during prosecution to obtain allowance of the patent claims, Astra is estopped from asserting a contrary claim interpretation at trial. See Senmed, Inc. v. Richard-Allan Medical Indus., 888 F.2d 815, 820 (Fed. Cir. 1989).

Although extrinsic evidence may not be used to vary or contradict the claim language, it is worthy to note that in this case, the extrinsic evidence directly confirms the claim construction gleaned by the court from the intrinsic evidence. Vitronics, 90 F.3d at 1585. One of the named inventors of the patents admitted at his deposition that to achieve a micropH around each omeprazole particle of not less than 7, as required by the specification, (see P1, col. 3:38-47; P2A, col. 8:3342), the ARC must necessarily be alkaline — a non-acidic, non-neutral, basic substance having a pH greater than 7. (See Pilbrant Tr. 1465:6-1466:8.)*fn17 Additional extrinsic evidence shows that during the development of Astra's omeprazole formulation, Astra determined that to achieve sufficient stability, it needed to include an alkaline material in the core with omeprazole, and it chose disodium hydrogen phosphate dihydrate*fn18 as the alkaline compound. (Carlsson Tr. 228:25-230:5, 231:21-232:3; G148 at 9612106-07.) Dr. Enar Carlsson, who was Astra's project leader for the development of Prilosec®, did not recall Astra ever trying materials of pH less than 7 in the core to solve the stability problem. (Carlsson Tr. 232:4-15.) Thus, a person of ordinary skill in the art would understand that an ARC, as that term is used in the '505 and '230 patents, must be an alkaline or basic compound.

b. Stability Through Micro-pH

As discussed above, based on the disclosures in the specification, a person of ordinary skill would also understand that the ARC must stabilize the omeprazole or acid labile compound in the core by creating a micro-pH of not less than 7 around the particles of the active ingredient. (See P1, col. 3:38-47; P2A, col. 8:33-42.) The ARC must be understood to stabilize the active ingredient in the formulation through creation of a micro-pH of not less than seven around the particles of the active ingredient not only because the specifications say so, but also because it makes sense in light of the goals this invention sought to achieve. As a practical matter, the goal is to stabilize and protect the omeprazole in the core. (Auslander Tr. 2520:24-2521:8; see also Langer Tr. 682:5-18.) Indeed, Astra's experts Dr. Langer and Dr. Davies*fn19 candidly admitted that the ARC claimed in the patents is an alkaline or basic compound that must create a micro-pH of not less than pH 7 around the omeprazole particles, thereby stabilizing the omeprazole.*fn20 (Langer Tr. 653:8654:23, 5106:1-13; Davies Tr. 1209:181210:16, 1221:19-1222:8.)

Astra has taken the position that claims 1 simply have no micro-pH range limitation whatsoever. (See, e.g., Astra's Cl. Constr. Mem. at 17.) The court finds, however, that the creation of a micro-pH of not less than 7 around the omeprazole particles is not merely a preferred embodiment of the invention, as Astra argues. The disclosure in the patents teaches that this is a required element in the definition of an ARC, and nothing elsewhere in the patents teaches or suggests otherwise. (Auslander Tr. 2521:9-13; see P1, col. 3:38-47; P2A, col. 8:33-42.) Astra's suggestion that the creation of the micro-pH as set forth in the specifications is a "preferred embodiment" is based on a misreading of the patents. The words "preferred" and "preferably" are used in the specifications only to modify the "desired concentration of omeprazole in the final mixture" and the micro-pH value of "not less than 8." (P1, col. 3:38-47; P2A, col. 8:33-42.) Recognizing that those two features are preferred embodiments, Defendants do not argue that either of those features form part of the proper claim interpretation of the term "alkaline reacting compound."

Astra also argues that Defendants are improperly trying to read the micropH claim limitation from dependent claim 5 of the '505 patent into claim 1, and that the legal theory of claim differentiation precludes Defendants' proposed construction. (See Astra's Cl. Constr. Mem. at 17.) Under claim differentiation, a limitation contained in a dependent claim may not be imported into the independent claim from which it depends. Karlin Techn., Inc. v. Surgical Dynamics, Inc., 177 F.3d 968, 972 (Fed.Cir. 1999); Transmatic, Inc. v. Gulton Indus., 53 F.3d 1270, 1277-78 (Fed. Cir. 1995). There is presumed to be a difference in meaning and scope when different words or phrases are used in separate claims. To the extent that the absence of such difference in meaning and scope would make a claim superfluous, the doctrine of claim differentiation states the presumption that the difference between the claims is significant. Tandon Corp. v. U.S. Int'l Trade Comm'n, 831 F.2d 1017, 1023 (Fed.Cir. 1987). Astra's argument misses the point, however, that the relevant narrowing limitation in claim 5 is the specific numerical pH range of 7 to 12, which includes an upper bound. Claim 5 of the '505 patent is narrower than claim 1 because it has a narrower numerical pH range. The "alkaline reacting compound" of claim 1 must create a micro-pH of not less than 7, but there is no specified upper limit on pH in claim 1, which covers a range of pH from 7 to 14. Claim 5, however, explicitly specifies a narrower pH range. (P1, col. 16:43-47, 16:65-68; Auslander Tr. 2535:13-2536:15.) The difference, and what may not be read into claim 1, is the specific numerical range of pH 7 to 12 recited into claim 5. Excluding the pH range from 12 to 14 in claim 5 is not insignificant. There are medical concerns involved with the use of formulations containing caustic, or very high pH, substances. For example, the use of omeprazole salts, which are very basic, may cause etching lesions or other gastrointestinal problems. (Lovgren Tr. 4930:3-4931:1; Langer Tr. 5148:4-5149:11.) Claim 6 of the '230 patent is narrower than claim 1 of that patent for the same reasons that claim 5 of the '505 patent is narrower than claim 1 of the '505 patent. (P1, col. 16:42-68; Lovgren Tr. 1864:4-1865:13; compare P1, col. 16:43-47, 16:65-68, with P2A, col. 13:29, 14:4-8.) Thus, narrowed claims 5 and 6, which set a maximum pH value of 12, clearly satisfy the presumption of claim differentiation; they are different from claim 1 because they have an upper limit for micro-pH. See Mantech Envtl. Corp. v. Hudson Envtl. Servs., 152 F.3d 1368, 1372 (Fed.Cir. 1998) (finding the patentee's argument based on claim differentiation "unavailing" given that the narrowing language of the dependent claim alone distinguished its scope from that of the independent claim); Manchak v. Chem. Waste Mgmt., Inc., No. 98-1530, 217 F.3d 860, 1999 WL 1103364, at *5 (Fed.Cir. Dec. 6, 1999) (unpublished opinion) (holding that the doctrine of claim differentiation "is inapplicable where one or more added limitations distinguishes the allegedly superfluous dependent claim from its parent independent claim"). Moreover, the doctrine of claim differentiation cannot override the clear statements of scope in the specifications and prosecution histories, which overcome any presumption arising from the doctrine. Toro Co. v. White Consol. Indus., Inc., 199 F.3d 1295, 1302 (Fed. Cir. 1999). Simply put, claim differentiation cannot broaden claims beyond their correct scope. Toro Co., 199 F.3d at 1302.

Astra's arguments against the micro-pH requirement fail for another reason. It is a fundamental concept in patent claim drafting that each element of a claim must have an antecedent basis; otherwise, the claim would be rejected as indefinite under 35 U.S.C. § 112. Manual of Patent Examining Procedure ("MPEP") § 2173.05(e), Lack of Antecedent Basis. Section 2173.05(e) of the MPEP states that

"[a] claim is indefinite [under 35 U.S.C. § 112] when it contains words or phrases whose meaning is unclear. The lack of clarity could arise where a claim refers to `said lever' or `the lever' where the claim contains no earlier recitation or limitation of a lever and where it would be unclear as to what element the limitation was making reference."

In claim 5 of the '505 patent and claim 6 of the '230 patent, each of which covers a preparation "according to claim 1," the term "micro-environment" is preceded by the word "the." The use of this definite article mandates that the term "micro-environment" was previously used in claims 1. Indeed, the antecedent basis for this term is derived from the fact that the phrase "alkaline reacting compound" of claims 1 includes, by definition, the element of micro-pH. If this were not true, then the term "micro-environment" would lack antecedent basis, rendering claim 5 of the '505 patent and claim 6 of the '230 patent invalid due to indefiniteness. Therefore, the court must construe the term "alkaline reacting compound" to require the creation of a micro-pH of at least 7 around the particles of the active ingredient. See Digital Biometrics, Inc. v. Identix, Inc., 149 F.3d 1335, 1344 (Fed.Cir. 1998) ("[I]f the claim is susceptible to a broader and a narrower meaning, and the narrower one is clearly supported by the intrinsic evidence while the broader one raises questions of enablement under § 112, [the court must] adopt the narrower of the two."). Whenever a claim is susceptible to one construction that would render it valid and another construction that would render it invalid, the claim will be construed to sustain its validity. Rhine v. Casio, Inc., 183 F.3d 1342, 1345 (Fed.Cir. 1999).

Astra's proposed definition of the term "alkaline reacting compound," a substance that when added to omeprazole can increase pH, is not only unsupported but also contradicted by the disclosures of the '505 and '230 patents. For example, if a substance with a pH of 6.8 is added to omeprazole, which Astra contends has a pH of 6.4,*fn21 and the resulting pH is increased, the substance would be within Astra's definition of ARC. The substance, however, would be acidic, and, therefore, its use would be completely inconsistent with the disclosures of the '505 and '230 patents. (See P1, col. 3:26-28, 38-47, col. 5:29-33.) There is no disclosure in the patents that the ARC can be acidic or a substance that simply increases pH when added to an acid labile compound, like omeprazole. (See generally P1; P2A.) Astra's argument that an ARC is anything that can raise the pH when added to omeprazole is directly contradicted by the numerous teachings in the patents that the alkaline compound must be truly alkaline, with a pH of not less than 7.

c. The Entire Core Need Not Be Alkaline

The alkaline reacting core material and/or alkaline salt of the active ingredient, omeprazole, enhances the stability of omeprazole. The cores [alkaline reacting core] suspended in water forms a solution or a suspension which has a pH, which is higher than that of a solution in which the polymer used for enteric coating is just soluble.

(P1, col. 5:23-29.) According to this statement, the pH of the core is only limited to being a value higher than the pH at which the enteric coating dissolves. Extrinsic evidence confirms that enteric coats begin to become soluble at pH values higher than those ordinarily present in the stomach, about pH 5. (Langer Tr. 299:6-8.) According to the patent itself, some enteric coatings dissolve at pH values below 7. For instance, as indicated in Table 5, formulation Example 3 dissolved at pH 6.0. (P1, col. 14:19-33.) Thus, the '505 patent teaches that the pH of the entire core can be less than 7 and as low as 6. This is possible, for example, where a formulator ensures that the environment around the omeprazole particles contains ARC even though other regions of the core contain acidic components that lower the pH.

In support of their attempt to restrict the pH of the entire core to values in excess of pH 7, Defendants rely on the inclusion of the terms "alkaline core" and "alkaline reacting core" in the patents. However, the use of those terms, which do not appear in claims 1, does not support importation of such a claim limitation, even with respect to claims containing the terms. A reading of both specifications makes clear that the terms "alkaline core" and "alkaline reacting core" are being used as shorthand for cores containing either an alkaline reacting compound or an alkaline salt of the active ingredient. The '505 patent uses the phrase "alkaline core" as a synonym for a core that contains an ARC, as may be seen from the following passages in the '505 patent:

In order to enhance the storage stability the cores which contain omeprazole must also contain alkaline reacting constituents. When such an alkaline core is enteric coated. . . .

(P1, col. 1:57-60 (emphasis added).)

Cores containing omeprazole mixed with alkaline compounds or an alkaline salt of omeprazole optionally mixed with an alkaline compound are coated with two or more layers, whereby the first layer/layers is/are soluble in water o[r] rapidly disintegrating in water and consist(s) of non-acidic, otherwise inert pharmaceutically acceptable substances. This/these first layer/layers separates/separate the alkaline core material from the outer layer, which is an enteric coating.

(P1, col. 3:21-29 (emphasis added).)

Thus, the special preparation according to the invention consists of cores containing omeprazole mixed with an alkaline reacting compound or cores containing an alkaline salt of omeprazole optionally mixed with an alkaline reacting compound. . . . . The cores are coated with an inert reacting water soluble or in water rapidly disintegrating coating, optionally containing a pH-buffering substance, which separates the alkaline cores from the enteric coating.

(P1, col. 5:19-33 (emphasis added).) Because one of ordinary skill would understand "alkaline core" to refer to any core containing an ARC or an alkaline salt of omeprazole, such a person would not understand that the entirety of the core necessarily must have a pH above 7. Similar to the definition of "alkaline core" in the '505 patent, the term "alkaline reacting core" in the '230 patent means a core that contains either an ARC or an alkaline salt of an acid labile compound. The patent specification confirms this construction.*fn23 (See P2A, col. 3:66 — col. 4:43 ("In order to enhance the storage stability, the cores which contain the acid labile substance must also contain alkaline reacting constituents. When such an alkaline core. . . .") (emphasis added); P2A, col, 10:14-25, ("Thus the special preparation according to the invention consists of cores containing the acid labile compound mixed with an alkaline reacting compound or. . . . The cores are coated with a water soluble or in water rapidly disintegrating coating, optionally containing a pH-buffering substance, which separates the alkaline cores from the enteric coating.") (emphasis added).)

In a similar vein, the patent claims do not require that a substance be proven to create a micro-pH of not less than 7 around every single, individual omeprazole particle present in the core of a formulation. The law is plain, infringement need not be perfect to be infringement. Shamrock Techs., Inc. v. Medical Sterilization, Inc., 903 F.2d 789, 792 (Fed. Cir. 1990) (inefficient infringement is still infringement). Unless it is expressly excluded by the claim language, the term "substantially" is understood as being incorporated into every patent claim. See AFG Indus., Inc. v. Cardinal IG Co., 239 F.3d 1239, 1250 (Fed.Cir. 2001) (stating that, with respect to a patent for which the parties generally agreed that a "layer" requires a "uniform" chemical composition, absent any specific statement in the patent of chemical uniformity as a characteristic of a layer, the layer must be understood as only "substantially" uniform.). KUDCo attempts to inappropriately add to "alkaline reacting compound" a requirement that it provide a microenvironment pH of not less than 7 around each omeprazole particle. However, claim terms must be construed practically, and a patent is infringed even if the infringement is less than perfect. See Shamrock Techs. Inc., 903 F.2d at 792. The examples in the patents demonstrate that the inventors did not contemplate that each and every particle of omeprazole must be enclosed perfectly in a microenvironment pH of at least 7 by the ARC. Table 3 of the patent shows that even when using the invention, some degradation of omeprazole occurs. (P1, col. 7:1228.) Thus, complete inclusion of every particle of omeprazole was not deemed essential to the invention, and the court will not import such perfectionism into the definition of the term "alkaline reacting compound" where it is not called for by the claims.

d. Other Limitations

Cheminor seeks a construction of the term "alkaline reacting compound" that would limit claims 1(a) to the narrowed classes of alkaline reacting compounds identified in the specification. Cheminor's proposal unduly limits the claim to specific embodiments in the specification. Karlin Tech., Inc. v. Surgical Dynamics, Inc., 177 F.3d 968, 973 (Fed.Cir. 1999). Moreover, limiting the alkaline reacting compounds solely to those listed is directly contradictory to the patent specification, which expressly states that the list was not meant to be exhaustive. (P1, col. 3:54-56.) The language of claims 1 does not require that every specific alkaline reacting substance alleged to be infringing be identified or listed in the specification. See Specialty Composites v. Cabot Corp., 845 F.2d 981, 989 (Fed.Cir. 1988) (finding unlisted plasticizers within the scope of the claims). Although the definition of the term "alkaline reacting compound" must be found in the specification in light of the other intrinsic evidence, that definition is one based on the function of the ARC, not its identity. Therefore, the appropriate inquiry is whether a particular compound has the required properties to perform the functions required of an ARC, not whether the compound is included in a non-exhaustive list of examples in the specification. See Specialty Composites, 845 F.2d at 987 ("The emphasis is on the suitability of any plasticizer that will achieve the specified properties, not on the particular class of plasticizer.").

Cheminor also argues that the ARC must be water soluble and "otherwise inert." Once again, Cheminor's attempt to define the ARC as a water soluble compound is an attempt to read a preferred embodiment into claims 1. Nothing in the claim language requires water solubility of the ARC, and the specification does not contain such a limitation. Even the portions of the specification relied on by Cheminor to define alkaline reacting compounds refer to practically insoluble ARCs. (P1, col. 3:48-50 (referring to Mg6Al2(OH)16 CO3•4H2O (hydrotalcite)); Astra's Cl. Constr. Mem. of 11/5/01, Ex. 10, Martindale 13th ed. at 886 (1993).) Similarly, the court rejects Cheminor's argument as to "otherwise inert" because the requirement is not contained in the claims. While the phrase is used in the specification of the patents relative to alkaline reacting substances, (P1, col. 3:41-42), "inert" is not in the claim as a modifier of "alkaline reacting compound," and it should not be imported into the claim. Also, other portions of the specifications do not include that language. (See, e.g., P1, col. 1:57-59; P2A, col. 3:66-68.)

Accordingly, based on the claim language, the numerous disclosures in the specifications of the '505 and the '230 patents, the statements Astra made about the prior art and the claimed invention during prosecution, and the admissions of Astra's own experts, the court finds that the term "alkaline reacting compound" means:

(1) a pharmaceutically acceptable basic substance having a pH greater than 7.0
(2) that stabilizes the omeprazole or acid labile active compound
(3) by reacting to create a micro-pH of not less than 7.0 around the particles of omeprazole or active acid labile compound.

3. The Term "Effective Amount"

Subpart (a) of claim 1 of the '505 patent requires an "effective amount of a material selected from the group consisting of omeprazole plus an alkaline reacting compound," (P1, col. 16:43-45), and the parties dispute the meaning of the phrase "effective amount."*fn24 The dispute between Astra and the four Defendants before the court boils down to a disagreement over whether the phrase "effective amount" applies to the omeprazole alone or to both the omeprazole and the alkaline reacting compound in the core. Astra argues for the former, while Defendants prefer the latter construction. The Second Wave Defendants also weigh in to argue that the claimed oral structure cannot be construed to encompass a capsule containing multiple "core regions," each one of which does not have an "effective amount" of omeprazole because claim 1 of the '505 patent requires a single core region that contains the entire "effective amount." The court agrees with the Second Wave Defendants in so far as the court finds that each core or core region must contain an "effective amount."*fn25 The plain language of subpart (a) of claim 1 dictates that finding. The question remains — an effective amount of what?*fn26

Astra's proposed construction of the claim term "effective amount" is a therapeutically effective amount of omeprazole sufficient to reduce gastric acid secretion. Under Astra's proposed construction, such an effective amount is a daily dose that can range from 1 to 400 mg of omeprazole, depending on the individual. This range is the only therapeutically effective amount of omeprazole disclosed in the '505 patent specification. (See P1, col. 6:12-20, and '505 Certificate of Correction.) The court declines to adopt Astra's proposed construction. The term "effective amount" in claims 1 and 14 of the '505 patent does not have the word "therapeutically" associated with it, and therefore, contrary to Astra's proposed construction, a person of ordinary skill in the art understands the term "effective amount" in claims 1 and 14 to have a different meaning than the phrase "therapeutically effective amount," which appears in claim 10. (P1, col. 16:43, 17:25, 18:15; Auslander Tr. 2538:72540:15; Langer Tr. 735:8-740:5.) On its face, claim 1 cannot be construed so that the "effective amount" requirement only refers to the amount of the omeprazole. First, the term "effective amount" modifies the phrase "a material selected from the group consisting of." Simple grammar rules indicate that the "effective amount" requirement applies to whatever, alone or in combination, constitutes the "material." Claim 1 also makes clear that the "material" is the group consisting of (1) omeprazole plus an ARC; (2) an alkaline omeprazole salt plus an ARC; and (3) an alkaline omeprazole salt alone. (P1, col. 16:43-47.) If the court were to define "effective amount" solely by the active ingredient, then in any given formulation the effective amount of "an alkaline omeprazole salt plus an alkaline reacting compound" would always be the same as the effective amount of "an alkaline omeprazole salt alone," because in those formulations the alkaline omeprazole salt is the active ingredient. Such a construction would thus effectively write out part of claim 1 — option 2 — as redundant, and is inconsistent with the specification's teaching that the alkaline salt can be mixed beneficially with an ARC, as stated in option 2. (See P1, Exs. 7 & 8, Col. 10:66-Col. 11:41, Comparative Ex. V, Col. 13:41-65.) The claim requires "an effective amount of material," not just an effective amount of active ingredient.

Having determined that the term "effective amount" applies to all substances required as part of the "material" required in claim 1(a), the court now concerns itself with the combination of omeprazole plus an ARC, which is the only option in claim 1(a) asserted by Plaintiffs against Defendants. The court finds that the term "effective amount" applies to both omeprazole and the ARC and requires an amount of each substance such that the combination of omeprazole plus the ARC meets the stated goal of the invention of stabilizing the omeprazole. (Accord Auslander Tr. 2539:8-2540:15.) That is, the term "effective amount" is a relative term. It requires that the ARC and omeprazole be present in the "material" in an appropriate ratio such that the ARC stabilizes the omeprazole. The ARC is used in the claimed formulation to improve storage stability. (Langer Tr. 740:6-741:2, see also Langer Tr. 735:8-740:5.) Therefore, an "effective amount" of an ARC in relation to a chosen amount of omeprazole in a given formulation is an amount sufficient to stabilize the omeprazole in the formulation's core. (Langer Tr. 740:23-741:15; see generally Langer Tr. 735:8-741:15.) As the specification discloses, that stabilization is achieved by using an ARC in the core to create a micro-pH around the omeprazole particles of not less than pH 7.

D. Part "(b)" of Claims 1

1. Ordinary Meaning of the Term Subcoating

Part (b) of claim 1 of the '505 patent requires "an inert subcoating which is soluble or rapidly disintegrating in water disposed on said core region, said subcoating comprising one or more layers of materials selected from among tablet excipients and polymeric film-forming compounds." (P1, col. 16:48-52; see also P2A, col. 13:10-15.) Part (b) of claim 1 of the '230 patent does not contain any material differences. (See P2A, col. 13:10-15.) The meaning of the term "subcoating" is apparent simply from a reading of the claims and the ordinary meaning of the terms contained therein. The subcoating is a layer of material that "coats" and is "disposed on" the core region; therefore, it must be physically on or in contact with that core region. The plain meaning of the noun "coating" requires a "material that will form a continuous film over a surface." McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed. at 394 (1994). See Interactive Gift Express Inc. v. Compuserve, Inc., 256 F.3d 1323, 1331 n. 1 (Fed.Cir. 2001) ("Dictionaries, which are a form of extrinsic evidence, hold a special place and may sometimes be considered along with the intrinsic evidence" when determining the ordinary meaning of claim terms.); Vitronics, 90 F.3d at 1584 n. 6. A "coating," like a film, must conform to the contours of the thing it "coats." The subcoating is also "sub," under or beneath, the enteric coating layer. In the context of the claims of the '505 and '230 patents, the court finds that the "subcoating" claim limitation requires a coating or covering that is physically on, or in contact with, and conforms to the contours of the core region.*fn27 The patent specifications support the court's finding that the patentees employed the ordinary meaning of the term "subcoating." The '505 patent describes "subcoated pellets" where the subcoating "was sprayed on the uncoated pellets." (P1, col. 8:6-15.) An additional four examples of subcoated pellets use this same technique. (P1, col. 8:55 — 62, col. 9:25 — 32, col. 10:8-10, col. 11:17-27.) Another subcoated core using a drying coating technique is described as well. (P1, col. 11:68 — col. 12:22; see also P2A, col. 12:1-22.) In each of these coatings, the subcoating is physically on, in contact with, and conforms to the contours of the core region. In conclusion, a subcoating is a layer that is physically on and conforms to the contours of a core and is underneath another layer — the enteric coating.

Defendants misconstrue the term subcoating by (1) attempting to broaden the claims by ignoring the prosecution history in which the applicant and the examiner acknowledged that the claimed subcoatings do not include a capsule separating layer, (2) ignoring basic grammar rules to require more than one material in the subcoating, (3) attempting to narrow the claims by reading process limitations and the preferred embodiment from the specification into the claims, and (4) requiring a super-coat with no imperfections — a standard that no formulation meets in the real world.

2. Gelatine Capsules Are Not Subcoatings

Defining the term "subcoating" to encompass gelatine capsules, Genpharm focuses on the word "subcoating" and finds it synonymous with the term "separating layer" while ignoring the requirement of the claims that the subcoating be "disposed on the core region." Genpharm adopts this construction largely to create a definition for the claim term so broad that it encompasses certain aspects in the prior art that Genpharm then argues invalidate the patents. Turning first to the intrinsic evidence relative to Genpharm's argument, the claims in question all use the language "subcoat;" they do not mention the term "separating layer," which appears only in the specification. Genpharm is correct, however, that both subcoatings and gelatine capsules are types of separating layers; the patent specification itself makes that clear. When read in context, the specifications disclose that a subcoating is a type of separating layer. For that reason, when describing subcoating techniques in column 4 of the '505 patent, the specification acknowledges "the subcoating layer, in the following defined as the separating layer." The specification then goes on to describe other separating layers such as gelatine capsules, (P1, col. 4:57-58); however, the specification nowhere suggests that every separating layer is a subcoat. Thus, the specifications of the '505 and '230 patents describe two types of separating layers — subcoatings and capsules. (P1, col. 4:3-58; P2A, col. 8:66 — col. 9:52.) Genpharm's assertion that the '505 and '230 patents expressly teach that hard gelatine capsules are, subcoatings is simply erroneous. The portions of the patents to which Genpharm refers do not use the word "subcoating." (See P1, col. 3:66-68, 4:57-58; P2A, col. 8:62-65, col. 9:51-52.) The first part in each patent states only that the powder mixture can be formulated into hard gelatine or soft gelatine capsules. The second reference in both patents says the gelatine capsule can serve as a "separating layer." Thus, according to the specification, both subcoatings and gelatine capsules are different species of the generic term "separating layer."

The fact that the specification expressly states that a gelatine capsule also can serve as a "separating layer," (P1, col. 4:57-58), does not mean a gelatine capsule is a subcoating. In fact, gelatine capsules are not subcoatings. This is understood from the plain meaning of the term "capsule," which is defined as "a soluble shell in which drugs are enclosed for oral administration," McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed. at 308 (1994), "a small gelatineous case containing medicine," New Webster's Dictionary and Thesaurus at 66 (1992), and "a shell usu. of gelatine for packaging something (as a drug or vitamins); also: usu. medicinal or nutritional preparation for oral use consisting of the shell and its contents," Merriam Webster's Collegiate Dictionary, 10th ed. at 170 (1993). As is apparent, the appropriate definitions for gelatine capsules are clearly incompatible with the requirements of a subcoating when that term is understood based upon its ordinary meaning as it appears in the claims of the '505 and '230 patents.

The prosecution history makes it unequivocally clear that gelatine capsules are not subcoatings. After the patent examiner had already granted the claims, Astra petitioned USPTO to consider a reference by authors Pilbrant and Cederberg. That reference mentions enteric-coated capsules containing omeprazole: "The dosage form — a tablet, a capsule, or granules — is coated with a polymer, which is insoluble in acid media but soluble in neutral to alkaline media [i.e., an enteric coating]." (P84, Pilbrant & Cederberg at 115, left column (emphasis added).) In distinguishing the '505 patent application over Pilbrant & Cederberg, Astra argued that the reference "does not, however, disclose preparations having a subcoating layer, such as in the claimed invention." (P7A at 2-3, '505 File History, Petition for Consideration of Prior Art After Payment of Issue Fee of 9/16/88 (App. 1, '505 Pros. History at 279-80); P8A at 5-6, '230 File History, Amendment of 12/19/88.) The USPTO granted Astra's petition and the '505 patent was issued over the Pilbrant and Cederberg reference. ('505 Pros. History at 282.) Astra's statement in the prosecution history that the entericcoated gelatine capsule in the Pilbrant and Cederberg reference was not the subcoat of the claimed invention and the USPTO's subsequent allowance of the application excludes the possibility that gelatine capsules are "subcoatings" as required by the '505 patent claims. Goldtouch Techns. Inc. v. Microsoft Corp., No. A99CA336ss, 2000 WL 85555, at *3 (W.D.Tex. Jan. 14, 2000) (excluding possibility during claim construction that claims covered matters disclaimed during prosecution history). Simply put, a gelatine capsule is not a "subcoating" within the meaning of the claimed invention of either the '505 or the '230 patent.

In support of its argument that gelatine capsules are subcoatings as that term is understood in the claims of the '505 and '230 patents, Genpharm relies heavily on statements made by Astra when it filed patent applications corresponding to the '505 and '230 patents in various foreign jurisdictions. Genpharm improperly seeks to rely on these foreign proceedings, since Genpharm has not even tried to lay a foundation for its argument that foreign prosecutions should be considered on an issue of United States law — namely, claim construction. See Heidelberger Druckmaschinen AG v. Hantscho Commercial Prods. Inc., 21 F.3d 1068, 1072 n. 2 (Fed.Cir. 1994); Medtronic, Inc. v. Daig Corp., 789 F.2d 903, 907-08 (Fed. Cir. 1986). The cases cited by Genpharm for the proposition that certain statements made by a patentee in connection with counterpart foreign applications may be relevant to claim construction of a United States patent, Tanabe Seiyaku Co. v. Inter. Trade Comm'n, 109 F.3d 726, 733 (Fed.Cir. 1997); Caterpillar Tractor Co. v. Berco, SpA, 714 F.2d 1110, 1116 (Fed.Cir. 1983), both relate to analysis under the doctrine of equivalents, a question of fact. See Insta-Foam Prods., Inc. v. Universal Foam Sys., Inc., 906 F.2d 698, 702 (Fed. Cir. 1990). Even assuming the alleged foreign "admissions" are admissible, however, they fail to support Genpharm's position.

During the prosecution of Astra's European omeprazole formulation patent application that corresponds to the '505 and '230 patents on July 27, 1990, the European Patent Office ("EPO") rejected Astra's application for lack of novelty, citing EP-A-124 495 (the "'495 patent"). (11/5/01 Hovden Decl., Ex. 7.) The '495 patent discloses a formulation that contains an alkaline omeprazole salt in a hard gelatine capsule that is enteric coated. (11/5/01 Hovden Decl., Ex. 8.) The examiner stated that the '495 patent referred to omeprazole salts in cores that were filled in hard or soft gelatin capsules allegedly functioning as a subcoat or separating layer. The following appeared at page 7 of the European application, lines 11-12: "In case of gelatin capsules the gelatin capsule itself serves as separating layer." (11/5/01 Hovden Decl., Ex. 9.) To overcome the examiner's lack of novelty rejection based on the gelatine capsule formulation disclosed in the '495 patent, Astra made the following amendments to its application on November 23, 1990:

D1 [the '495 salts patent] is the Applicant's own patent. According to D1 it is either enteric coated granules or a powder that are filled into the hard gelatine capsules or a solution that is filled into the soft capsules. The wording on page 7, lines 11 and 12 in our specification, which the Examiner has pointed out and also the lines 31-34 on page 5 of our specification has been amended on the attached copies of said pages in order to define the invention without difficulty and clearly restrict us from D1.

(11/5/01 Hovden Decl., Ex. 10, at 2.) In a follow-up communication from Astra to the European Patent Office three days later, Astra directly addressed the issue of whether a separating layer-capsule falls within the meaning of the term subcoating in the patent claims:

We refer to our letter of November 23, 1990 and would like to further define the difference between citation D1 [the '495 salts patent] and this application. Please be informed that the enteric coated granules in D1 have no subcoating. As this was obvoius [sic] to us we forgot to stress this important difference. As a consequence we are enclosing a further amended page 4, where this is clarified and we kindly ask the Examiner to perform this amendment in the file copies.

(Astra's Resp. to Defs.' Cl. Constr. Briefs, Ex. 64, Margareta Linderoth's 11/26/90 Letter to EPO.) The amendment provided the following changes to the European Specification, handwritten in at the bottom of page 4 of Exhibit 64: "E-P-A-124 495 describes enteric coated granules without subcoating or powder that are filled into hard gelatine capsules or a solution that is filled into soft capsules." (Astra's Resp. to Defs.' Cl. Constr. Briefs, Ex. 64, Margareta Linderoth's 11/26/90 Letter to EPO, at 3; Ex. 66, EP 247 983 B1, at 4:19-20.) About a year later on October 11, 1991, Astra again communicated with the EPO in correspondence that states, "[f]urther there is no subcoating according to D1 [the '495 patent]. Thus the claimed invention is novel over D1. The examiner also recognized inventiveness of the invention at the interview, but wanted to have a written explanation of the citations." (Astra's Resp. to Defs.' Cl. Constr. Briefs, Ex. 65.) Again, Astra informed the EPO that the '495 patent did not disclose a subcoat, and this communication pointed out that the examiner agreed, as shown by the fact that the examiner recognized inventiveness at the interview. (Astra's Resp. to Defs.' Cl. Constr. Briefs, Ex. 67.) These facts, which Genpharm admitted in its claim construction briefing, show that all separating layers are not subcoatings and that the hard and soft gelatine capsules in the reference at issue were not subcoatings. Thus, Astra's European prosecution is consistent with the ordinary meaning of the claim term "subcoating" and the plain language of the '505 and '230 patents.

Genpharm also refers to foreign patent proceedings in the Republic of South Africa during Astra's prosecution of an omeprazole formulation patent that corresponds to the '505 and '230 formulation patents. Genpharm relies upon the following language from an amendment discussing the '495 patent:

EP-A-0 173 664 (A B Hässle) and EP-A-0 124 495 (A B Hässle) are citable as prior art. The Applicant believes that these patent specifications do not destroy the novelty of claim 1 of the patent because gelatine capsules where the capsule serves as a subcoating, fall outside the scope of claim 1 when properly construed. In order to avoid a possible adverse finding based on these prior art documents, the Applicant seeks to delete reference to gelatine capsules at the passages cited, thereby ensuring that the patent specification is clear in this regard and is not vulnerable to an attack based on this prior art.

(11/5/01 Hovden Decl., Ex. 11, at 3.) Even the portion quoted by Genpharm acknowledges that gelatine capsules fall outside the scope of claims 1 of the '505 and '230 patents when properly construed. (See 11/5/01 Hovden Decl. Ex. 11, at 3.) Once again, a document from the South African file expressly refutes Genpharm's assertion that the claimed subcoating covered gelatine capsules. (Astra's Resp. to Defs.' Cl. Constr. Briefs Ex. 36, Application to Amend South Africa Specification, filed 9/17/97, at 7.)

Additional extrinsic evidence also supports Astra's construction. Dr. Langer testified that a subcoating was a substantially continuous film, distinguishing between subcoatings on one hand and separating layers or gelatine capsules on the other. (Langer Tr. 419:1-4, 421:8-16, 442:16-18, 5026:4-5027:9, 5029:3-16.) While a subcoating and gelatine capsules both separate, the subcoating conforms to and is in contact with the core. (Langer Tr. 5026:1-5027:3.) The inventors also distinguished between subcoatings and separating layers or gelatine capsules. (Pilbrant Tr. 1631:20-24, 1718:5-23, 1719:1-11; Lövgren Tr. 4520:14-24.) Prior to trial, others of at least ordinary skill, including Genpharm's expert Dr. Story and Cheminor's expert Dr. Porter, construed the term "subcoating" so that it did not include gelatine capsules and acknowledged that the subcoatings of claims 1 were missing from the prior art describing such gelatine capsule separating layers. (See Story Tr. 4798:9-4799:11, 4799:21-4801:8.) Dr. Porter stated categorically that the '974 patent,*fn28 which refers to enteric-coated gelatine capsules, is missing the subcoating. (Astra's Cl. Constr. Resp. of 11/12/01, Ex. 34, Porter Dep. Tr. 86:7-87:10.) In other words, Dr. Porter recognized that the gelatine capsules are not subcoatings as they are claimed in the '505 and '230 patents. Dr. Goldberg, Andrx's expert, expressly noted the difference between coatings and capsules in a sworn affidavit:

The process of making capsules is substantially different than the process of microencapsulation. The process of microencapsulation involves coating the individual particles of the material while the manufacture of capsules involves placing multiple particles into a pre-existing shell capsule. Capsules can also contain drugs that have been microencapsulated.

(Astra's Resp. to Defs.' Cl. Constr. Briefs, Ex. 61, Decl. of Dr. Arthur H. Goldberg dated 2/26/98, at 6.)

To sum up, based upon the ordinary meaning of the terms "subcoating" and "capsule," the patent specifications and file histories, the foreign proceedings raised by Genpharm, and other extrinsic evidence, the court finds that the phrase "subcoating . . . disposed on said core region" that appears in claims 1 of the '505 and '230 patents does not include gelatine capsules.

3. One Subcoating May Contain One "Material"

Cheminor asserts that under claim 1 of both the '505 and the '230 patents, the subcoating must be made up of two or more materials and that any subcoating consisting of only one material does not come within the scope of the claims. The court notes that this construction, like others adopted by Cheminor, is newly proposed. Cheminor conceded in a letter written two months after trial began that this was a new claim construction. (See Letter from Cheminor to court of 2/6/02; Trial Tr. 4037:16-4038:5.) Cheminor did not come forward with it until a month after Astra's last witness with respect to infringement, Dr. Lövgren, left the stand on January 4, 2002. The prejudice to Astra from this decidedly late claim construction argument is plain. Astra did not have a reasonable opportunity to present documentary evidence or to have its experts testify concerning this new construction. The court, therefore, sustains Astra's objection to Cheminor's change in position and precludes Cheminor from asserting noninfringement on the basis of this argument. Nevertheless, for purposes of completeness, the court addresses this argument, which is at best superfluous and at worst specious. Before February of 2002, Cheminor apparently never noticed this new construction, and it can hardly be deemed the way one of ordinary skill in the art would construe the claims.

Turning to the claim language itself, the pertinent language is not merely "materials," but rather claim 1 of the '505 patent, which requires "one or more layers of materials," (P1, col. 16:50-51), and claim 1 of the '230 patent, which requires "one or more layers comprising materials." (P2A, col. 13:12-13). When construing this claim language, the court must remain cognizant of the rules of grammar and syntax. In re Hyatt, 708 F.2d 712, 714 (Fed.Cir. 1983). The court finds that even though the term "materials" in claims 1 of the '505 and '230 patents was clearly intended to include the singular, the plural form was used to comply with grammatical correctness. See Huntington Dry-Pulverizer Co. v. Whittaker Cement Co., 89 F. 323, 326 (N.J. 1898) (construing the claim, which included the terms "rollers" and "shafts," to include a roller and a shaft; explaining that "the use of the plural included the singular, if the singular could do the work marked out by the plural"). The phrases "one or more layers of materials" and "one or more layers comprising materials" require at least one material when there is one layer, and at least two materials when there is more than one layer. This is the only construction that makes sense for either the '505 or the '230 patent when one considers the substance of the inventions. There is no support in either patent for the exclusion of subcoatings made of only one material. Several examples listed in the patent use only one material in their subcoats: Examples 3 and 4 use only polyvinylpyrrolidone ("PVP") in the subcoating (P1, col. 8:58, 9:27); and Examples 2, 5, 7, and 8 use only HPMC (P1, col. 8:10, 10:10, 11:23-24). Any construction of the claims that excludes 6 of the first 8 examples included in the patent cannot be the proper construction, absent some express intent or reason to exclude them, and Cheminor relies solely on attorney argument in support of this contention and has presented no testimony on the issue. Therefore, the court rejects Cheminor's attempt to limit the claims of the '505 and '230 patent to cover only those formulations containing more than one "material" in the subcoating.

4. The Term "Disposed on" Does Not Require a Separate Processing Step

Andrx argues that the phrase "disposed on" requires that the subcoating be "physically applied to" the core, as opposed to forming spontaneously. Andrx's definition attempts to import process limitations into a product claim. It is improper to limit product claims to a particular process. Vanguard Prods. Corp. v. Parker Hannifin Corp., 234 F.3d 1370, 1372-73 (Fed.Cir. 2000) (holding scope of claim for electromagnetic shielding gasket not limited to method of manufacture set forth in specification). A novel product that meets the criteria for patentability is not limited by the process by which it is made, Vanguard Prods., 234 F.3d at 1372-73, and the specification need not describe every possible way of making the product, SRI Int'l v. Matsushita Elec. Corp. of Am., 775 F.2d 1107, 1121-22 (Fed.Cir. 1985). Andrx's claim construction position ignores this basic principle and attempts to narrow the product claims of the '505 and '230 patents to cover only those formulations made by applying the subcoating in a particular way. However, the product claims are not limited in the manner in which the product is made and so would include products in which the subcoating was formed in situ. See Atlas Powder Co. v. E.I. du Pont De Nemours & Co., 750 F.2d 1569, 1581 (Fed.Cir. 1984) (upholding the district court's rejection of defendant's argument that because its product is formed in situ it is different from the claimed product) ("It is the claimed product, . . . not the process of forming it, that is involved.").

The intrinsic evidence is crystal clear. The '505 patent contains 8 asserted product claims and 1 asserted process claim. It is not surprising, therefore, that the specification contains disclosure about the process. Even if the patent contained only product claims, the law would require the patent to enable the making of the invention. See 35 U.S.C. § 112. For this reason, Defendants are wrong when they refer to the different methods disclosed in the specification as evidence that the product claims are limited.*fn29 The phrase "disposed on" only appears in the product claims, which provide a composition and structure for the claimed formulation. As such, the phrase "disposed on" as used is used in its conventional patent law sense — that is, to refer to the position or location of an element in a structure. See generally Moeller v. lonetics, Inc., 794 F.2d 653, 655 (Fed.Cir. 1986); Lawler Mfg. Co. v. Bradley Corp., No. IP98-1660, 2000 WL 33281119, at *21 (S.D.Ind. Nov. 30, 2000). Contrary to Andrx's arguments, the court finds that the patentees did not act as their own lexicographers to define this commonly understood phrase with any special meaning. The ordinary meaning of the phrase "disposed on" in the context of these product claims refers to the position of the subcoating relative to the core and, as mentioned above, means that the subcoating is in contact with the core region. The court finds that the term "disposed on" does not require that the subcoating be applied using any particular process and that the subcoating need not necessarily be "physically applied to" the core in a separate processing step.*fn30

5. The Claims Do Not Require Perfection

While the parties seem to agree that the subcoating, as a type of separating layer, has to separate the core and the enteric coating, (see P1, col. 5:29-33), Andrx's claim construction arguments would also impose numerous additional requirements on the subcoating. Andrx would include in the definition of the term subcoating several components designed to ensure that the required separation is perfect and absolute. Andrx's position, developed at trial through its expert Dr. Banakar, is that in 1985 a person of ordinary skill in the art of pharmaceutical formulation would have understood that a subcoating "has to separate something" such that "[w]hat is being separated cannot be in the separating layer," "has to be 100% continuous," "has to have defined boundaries," and "has to have a defined thickness." (Banakar Tr. 3217:1-5.) In other words, adoption of Andrx's position would require that the subcoating have no imperfections. The court finds that Andrx's position is inconsistent with the intrinsic evidence and the real world.

Looking at the intrinsic evidence, the claims omit any words like continuous, separating, definite boundaries or specific thicknesses. If there were any doubt, Table 3 of the patent, (P1, col. 7:12-28), shows that even some subcoated formulations of the invention exhibited discoloration, and so were not perfect. What is important is that even though some of those formulations showed some discoloration, they were improved over those with no subcoat. (See P1, col. 7:12-28.) In other words, the formulation with a subcoating discolored less than the formulation with no subcoat. Thus, the patent contemplates, and the court construes the claims to cover, subcoatings that are less than perfect, including subcoatings that contain inconsequential amounts of omeprazole or permit inconsequential contact between portions of the core and the enteric coat. The claims do not require a perfectly continuous, exactly uniform subcoating. See Atmel Corp. v. Info. Storage Devices, Inc., 997 F. Supp. 1210, 1221 (N.D.Cal. 1998) (rejecting defendant's argument that a layer cannot have a varying thickness because there is "nothing in the meaning of the word `layer' that so restricts the patent"); AFG Indus., Inc. v. Cardinal IG Co., 239 F.3d 1239, 1250 (Fed. Cir. 2001) (stating that, with respect to a patent for which the parties generally agreed that a "layer" requires a "uniform" chemical composition, absent any specific statement in the patent of chemical uniformity as a characteristic of the layer, the layer must be understood as only "substantially" uniform). As the court has already noted, infringement need not be perfect to be infringement, Shamrock Techns., Inc. v. Medical Sterilization, Inc., 903 F.2d 789, 792 (Fed.Cir. 1990) (inefficient infringement is still infringement), and the term "substantially," unless expressly excluded, is understood as being incorporated into a patent claim. Contrary to Andrx's assertions with respect to the meaning of "subcoating," a subcoating can still be sufficiently continuous, despite the presence of an imperfection, to be considered a film. Whether perfect or not, a subcoating is still a subcoating.

Although the court need not look to extrinsic evidence to construe the claim term "subcoating," the court notes that the extrinsic evidence supports rejection of Andrx's perfectionistic claim construction. In the real world of pharmaceutical formulation, it is understood that coatings may have imperfections. For this reason, when asked whether the subcoating had to be continuous, Dr. Langer stated that the subcoating should be "substantially continuous." (Langer Tr. 419:1-4; see Langer Tr. 424:2-8 ("The only thing I don't want to imply is that something can be absolutely perfect because nothing in science is perfect. Anyone of ordinary skill would know that.").) Thus, Andrx's strained requirements of perfection are inconsistent with the understanding of those skilled in the art.*fn31 The court must construe the patent terms practically.

6. The Term "Inert"

Subparagraphs (b) of claims 1 of the '505 and '230 patents require that the subcoating be "inert." (P1, col. 16:48; P2A, col. 13:10.) The inventors nowhere defined the term "inert" to have any specialized meaning; "inert" is not expressly defined in the '505 and '230 patents, or in their file histories. That means that the ordinary meaning of the term controls, and the ordinary meaning of "inert" is very clear. At the time of the patents, a person of ordinary skill in the art of pharmaceutical formulation would have understood the term "inert" to mean pharmaceutically, chemically, and pharmacologically inactive. (Banakar Tr. 3220:24-3221:1.) This is consistent with the common understanding of the term set forth in dictionaries and technical treatises. See, e.g., Oxford University Press (1974) (defining "inert" as "without active chemical properties"); Oxford University Press (1973) (defining "inert" as "without active chemical, physiological or other properties; neutral"; Random House (defining "inert" as "having little or no ability to react"; "Pharm. having no pharmacological action, as the excipient of a pill"); A55 at 635 (Hawley's Condensed Chemical Dictionary (12th ed.) ("Inert: A term used to indicate chemical inactivity in an element or compound.")).) In Remington's Pharmaceutical Sciences, for example, the term "inert" is used as follows: "[i]n addition to the active or therapeutic ingredient, tablets contain a number of inert materials. The latter are known as additives or excipients." Remington's Pharmaceutical Sciences, 17th ed. at 1605 (1985) (emphasis added) (Andrx Reply Mem. Regarding Cl. Constr. of 11/12/01, Ex. Q). These terms, which are widely used in pharmaceutical science, are terms of art meaning an inactive material in a pharmaceutical dosage form. Handbook of Pharmaceutical Excipients, Arthur H. Kibbe, Ph.D., Ed., Preface at xv, 3d ed. (2000) (Andrx Reply Mem. Regarding Cl. Constr. of 11/12/01, Ex. R). The Handbook of Pharmaceutical Excipients does not list any pharmaceutically active substance as an additive or excipient. Thus, the court adopts the construction proffered by Defendants, which is grounded entirely in the ordinary meaning of the term. See Johnson Worldwide Assocs., Inc v. Zebco Corp., 175 F.3d 985, 989 (Fed.Cir. 1999) (holding that the ordinary meaning of claim language is heavily presumed and that party seeking to use statements in the written description to affect a patent's scope must at the very least identify a claim term that is susceptible to clarification); see also Renishaw PLC v. Marposs Societa' per Azioni, 158 F.3d 1243, 1248-49 (Fed.Cir. 1998).

Reliance on the ordinary meaning of the term, however, does not require blindfolding oneself to reality, as Defendants have done. Just as Defendant Andrx argued that the subcoating had to be 100% continuous, among other things, Defendants argue that the term "inert" requires the absolute absence of any pharmaceutically active or chemically reactive substances in any infringing subcoating. Under Defendants' proposed construction, this absence of reactivity is to be determined in a vacuum, based solely upon the known characteristics of a particular substance found to be in a subcoating and without reference to the invention or consideration of the materials with which that particular substance interacts. Defendants' construction would bar even a single molecule of omeprazole from appearing in the subcoating of an infringing formulation. Once again Defendants' claim construction theory attempts to read an unattainable "perfection" limitation into the claims. Indeed, since almost no substance is totally inert under all conditions, Defendants' construction would vitiate any possibility of proving infringement and thereby render the claims meaningless. The law is plain, infringement need not be perfect to be infringement. Shamrock Techns., Inc. v. Medical Sterilization, Inc., 903 F.2d 789, 792 (Fed.Cir. 1990). Moreover, the term "substantially," unless expressly excluded, is understood as being incorporated into a patent claim. See AFG Indus., Inc. v. Cardinal IG Co., Inc., 239 F.3d 1239, 1250 (Fed.Cir. 2001) (stating that, with respect to a patent for which the parties generally agreed that a `layer' requires a "uniform" chemical composition, absent any specific statement in the patent of chemical uniformity as a characteristic of a layer, the layer must be understood as only "substantially" uniform.). A subcoat that is "substantially" inert will also meet the claim limitation of "inert subcoat." Genpharm's Andrx's and Cheminor's contention that "inert" must mean totally and absolutely inert is simply wrong as a matter of law.

The claim language and other disclosures in the patent support the position that the use of the word "inert" to modify the term "subcoating" was not intended to cut off all possibility of reactivity. In fact, the claim language "said subcoating comprising . . . materials selected from . . ." permits the presence of additional components in the subcoating. See Crystal Semiconductor Corp. v. TriTech Microelectronics Int'l Inc., 246 F.3d 1336, 1348 (Fed.Cir. 2001). In addition, the patent claims and specifications themselves make it clear that the subcoating can contain chemically reactive substances, like alkaline reacting compounds. Defendant's definition is inconsistent with claim 11 of the '505 patent, which expressly requires that the subcoating of claim 1 include an ARC, (P1, col. 18:1-3), and the '505 patent specification, which expressly permits ARCs in the subcoating, (P1, col. 4:14-27). Any doubt that the "inert subcoating" of claim 1 can include reactive compounds and pharmaceutically active compounds is directly addressed by reviewing claim 1 in the context of claim 11. Claim 11 expressly calls for "[a] preparation according to claim 1, wherein the subcoating further comprises an alkaline buffering compound." (P1, Col. 18:1-3.) In other words, subcoats may include "alkaline buffering compounds," like disodium hydrogen phosphate, which is not only an ARC but also a pharmaceutically active compound. (Astra's Cl. Constr. Mem. Ex. 11, 1996 Merck Index 12th ed. at 1481 (DHP listed with therapeutic activity in humans).)

The patent prosecution histories also teach that the subcoating can contain pharmaceutically active substances, like omeprazole. During the prosecution of the '230 patent, the examiner rejected Astra's claims as indefinite, asserting that acid labile compounds and ARCs could be the same thing. ('230 Prosecution History, at 216 ("[T]he language `acid labile compound' and `alkaline reacting compound' read on the same compound whereas applicants specification specifically identifies precise and exact compounds that are not related.").) In its response, Astra pointed out that the examiner was correct, that ARCs can also be acid-labile compounds. ('230 Prosecution History at 256 ("this is precisely what applicants intended").) That part of the prosecution history shows that ARCs may be pharmaceutically active, acid labile compounds, and the specification expressly states that a subcoating may contain such compounds. (P2A, col. 9:23-25 ("The separating layer consists of one or more water soluble inert layers, optionally containing pH-buffering substances.").)

Credible extrinsic evidence supports the court's construction as well. For example, Defendants' experts Dr. Auslander and Dr. Porter opined that formulators understand the term "inert" to mean not having an adverse affect on the formulation and to encompass situations where there is a small amount of interaction. (See Astra's 11/12/01 Cl. Constr. Resp., Exs. 34, 70.)*fn32 Even the prior art relied on by Defendants shows that the term "inert" means substantially non-reactive. (See G31, GB 760 403 at 2, col. 2:67-70 ("By `inert mineral solid' is meant a mineral solid which is substantially non-reactive with either the coating substance [enteric coating] or the medicament and is inert to acid medium.").) For these additional reasons, the aspects of Defendants' claim construction requiring that every molecule of every substance in the subcoating be utterly devoid of all reactivity are inconsistent with the patents' claim language, specifications, and prosecution histories.

Defendants worry about the slippery slope; they ask, if the materials in the subcoating do not have to be completely inert, just how "inert" is enough to qualify as "inert?" Defendants' fear is unwarranted. A person of ordinary skill reviewing the '505 and '230 patent specifications would understand that the invention is a stable formulation. That requires a subcoating that protects the omeprazole and maintains the integrity of the enteric coating. (See, e.g., P1, col. 15:34-38; see also P1, col. 15:7-16.) The meaning of "inert" flows directly from the invention described in the specification — the subcoating layer cannot adversely affect the properties of the omeprazole or the enteric coating. The patent specification provides that "not adversely affecting . . . the enteric coating" means that the formulation retains gastric acid resistance. (See, e.g., P1, col. 5:33-53 ("Without this separating layer the resistance towards gastric juice would be too short and/or the storage stability of the dosage form would be unacceptably short.").) This construction of the term "inert" is also supported by the file histories of the two patents. For example, United States Patent 4,685,918 ("Amidon"), a document referenced in the prosecution history for the '505 patent, discusses "inert inorganic and organic solvents" that "do not adversely harm the core, wall, and the materials forming the final wall." (Astra's Cl. Constr. Mem., Ex. 19, '505 Pros. History at 295, Amidon, col. 10:4-8 (emphasis added).)

The patent specifications describe the properties the subcoating should have in terms of stability. The subcoating must provide increased gastric acid resistance and storage stability. (See, e.g., P1, col. 5:33-53.) Thus, the patent teaches that the subcoating must be inert under those conditions, which allows for the possibility that some inconsequential amounts of different components may react under some conditions or to such a limited extent that gastric acid resistance and storage stability remain uncompromised for practical purposes. Therefore, the court construes the term "inert" in claims 1 of the '505 and '230 patents, when modifying "subcoating," to require that the subcoating be chemically, pharmaceutically, and pharmacologically inactive such that the subcoating does not adversely affect the properties of the active ingredient or the enteric coating material in the formulation.

7. The "Soluble or Rapidly Disintegrating in Water" Requirement

The phrase "which is soluble or rapidly disintegrating in water" is straightforward; it requires that the subcoating dissolves or breaks up quickly in water. The specification provides examples of water soluble compounds and polymers: "The material for the separating layer is chosen among the pharmaceutically acceptable, water soluble, inert compounds or polymers used for film-coating applications such as, for instance sugar, polyethylene glycol, polyvinylpyrrolidone, polyvinyl alcohol, hydroxypropyl cellulose, methylcellulose, hydroxymethyl cellulose, hydroxypropyl methylcellulose, polyvinyl acetal diethylaminoacetate or the like." (P1, col. 4:35-42 and '505 Certificate of Correction; see also P2A, col. 8:43-55.) The "soluble or rapidly disintegrating in water" requirement affords omeprazole release in the very upper portion of the small intestine, also referred to as the "duodenum" or "proximal part" of the small intestine, the desired site for absorption. (P1, col. 1:4547, col. 2:29-30, 53-55.)

E. Part "(c)" of Claims 1

Part "(c)" of claims 1 of both patents requires an enteric-coating layer and defines the required characteristics of that layer. This portion of the claims is largely self-explanatory. On the subcoating layer is an enteric-coating material, a material that protects the medicinal preparation so that it will pass through the stomach unaltered. An enteric-coating material is a polymer that is insoluble in acid media but soluble in neutral to alkaline media; therefore, it resists breakdown in the stomach. Examples of enteric coatings may be found in the '505 patent and include hydoxypropyl methylcellulose phthalate and Eudragit L-100 brand enteric coating, which is a methacrylic copolymer. (P1, col. 4:59 — col. 5:18.)

Unlike claim 1(c) of the '505 patent, claim 1(c) of the '230 patent contains additional language further characterizing the subcoating. (P2A, col. 13:16-20.) The claim language "wherein the subcoating layer isolates the alkaline reacting core from the enteric coating layer such that the stability of the preparation is enhanced" is self-explanatory in that it means that the subcoating layer isolates or separates the core from the enteric coating sufficiently to enhance the formulation's stability. According to the specification of the '230 patent, the subcoating of claim 1 isolates the core from the enteric coating through the creation of a "pHbuffering zone" between them. (See P2A, col. 9:4-8 ("The subcoating layer, (the separating layer), also serves as a pH-buffering zone in which hydrogen ions diffusing from the outside in towards the alkaline core can react with hydroxyl ions diffusing from the alkaline core towards the surface of the coated articles.").) As claim 1 of the '230 patent expressly states, the existence of this subcoating zone, in combination with the rest of the claimed formulation, enhances stability. As explained in the '230 patent specification, (P2A, col. 8:67 — col. 9:4), the subcoating, in combination with the other claimed elements, enhances stability by protecting against the "degradation/discoloration of the acid labile compound during the coating process o[r] during storage." (P2A, col. 9:2-4.)*fn33

F. Claim 3 of the '505 Patent

Claim 3 of the '505 patent is dependent on claim 1: "A preparation according to claim 1 wherein the subcoating comprises two or more sub-layers." (P1, col. 16:60-61.) This claim has been asserted only against Defendant Andrx, and no corresponding claim in the '230 patent has been asserted. The claim unambiguously requires that the subcoating be made up ...


Buy This Entire Record For $7.95

Download the entire decision to receive the complete text, official citation,
docket number, dissents and concurrences, and footnotes for this case.

Learn more about what you receive with purchase of this case.